Entropy Minimization for Many-Body Quantum Systems

被引:0
|
作者
Romain Duboscq
Olivier Pinaud
机构
[1] Institut de Mathématiques de Toulouse,Department of Mathematics
[2] UMR5219,undefined
[3] Université de Toulouse; CNRS,undefined
[4] INSA,undefined
[5] Colorado State University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The problem considered here is motivated by a work by Nachtergaele and Yau where the Euler equations of fluid dynamics are derived from many-body quantum mechanics, see (Commun Math Phys 243(3):485–540, 2003). A crucial concept in their work is that of local quantum Gibbs states, which are quantum statistical equilibria with prescribed particle, current, and energy densities at each point of space (here Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document}, d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 1$$\end{document}). They assume that such local Gibbs states exist, and show that if the quantum system is initially in a local Gibbs state, then the system stays, in an appropriate asymptotic limit, in a Gibbs state with particle, current, and energy densities now solutions to the Euler equations. Our main contribution in this work is to prove that such local quantum Gibbs states can be constructed from prescribed densities under mild hypotheses, in both the fermionic and bosonic cases. The problem consists in minimizing the von Neumann entropy in the quantum grand canonical picture under constraints of local particle, current, and energy densities. The main mathematical difficulty is the lack of compactness of the minimizing sequences to pass to the limit in the constraints. The issue is solved by defining auxiliary constrained optimization problems, and by using some monotonicity properties of equilibrium entropies.
引用
收藏
相关论文
共 50 条
  • [31] Irreversible dynamics in quantum many-body systems
    Schmitt, Markus
    Kehrein, Stefan
    PHYSICAL REVIEW B, 2018, 98 (18)
  • [32] Quantum effects in many-body gravitating systems
    Golovko, VA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (29): : 6431 - 6446
  • [33] Effective Lagrangians for quantum many-body systems
    Jens O. Andersen
    Tomáš Brauner
    Christoph P. Hofmann
    Aleksi Vuorinen
    Journal of High Energy Physics, 2014
  • [34] THE ERGODIC BEHAVIOUR OF QUANTUM MANY-BODY SYSTEMS
    VANHOVE, L
    PHYSICA, 1959, 25 (04): : 268 - 276
  • [35] Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems
    Gherardini, Stefano
    De Chiara, Gabriele
    PRX QUANTUM, 2024, 5 (03):
  • [36] Emergence of Objectivity for Quantum Many-Body Systems
    Ollivier, Harold
    ENTROPY, 2022, 24 (02)
  • [37] Quantum Many-Body Systems in Thermal Equilibrium
    Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, Garching
    D-85748, Germany
    不详
    28049, Spain
    PRX. Quantum., 4
  • [38] Measure synchronization in quantum many-body systems
    Qiu, Haibo
    Julia-Diaz, Bruno
    Angel Garcia-March, Miguel
    Polls, Artur
    PHYSICAL REVIEW A, 2014, 90 (03)
  • [39] Effective Lagrangians for quantum many-body systems
    Andersen, Jens O.
    Brauner, Tomas
    Hofmann, Christoph P.
    Vuorinen, Aleksi
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [40] Gappability Index for Quantum Many-Body Systems
    Yao, Yuan
    Oshikawa, Masaki
    Furusaki, Akira
    PHYSICAL REVIEW LETTERS, 2022, 129 (01)