Strip-loaded Mach-Zehnder interferometer for absolute refractive index sensing

被引:4
|
作者
Doughan, Isaac [1 ]
Oyemakinwa, Kehinde [1 ]
Ovaskainen, Olli [1 ]
Roussey, Matthieu [1 ]
机构
[1] Univ Eastern Finland, Ctr Photon Sci, Dept Phys & Math, Joensuu 80101, Finland
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
芬兰科学院;
关键词
OPTICAL WAVE-GUIDES; LATERAL CONFINEMENT; BOUNDARY-CONDITION; Y-BRANCH; DESIGN;
D O I
10.1038/s41598-024-53326-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents the design, fabrication, and characterization of a Mach-Zehnder interferometer (MZI) on a strip-loaded platform specifically developed for the measurement of refractive index variations in liquids. A novel approach of large opening in the sensing region enhances the sensitivity by using the analyte as the loading strip. This allows surpassing the performances of the conventional perforations and trenched-based MZIs and prevent protecting the reference arm. The implementation of this design resulted in a high confinement factor of approximately 23%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} in the cladding, enabling an effective interaction between the evanescent field and analyte. Ethanol-water solutions with varying concentrations were used as analyte for the characterization of the device. The strip-loaded waveguide was a 200 nm TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} thin film on a silicon dioxide wafer and a 1.2 mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}m wide for 800 nm-thick nLOF resist served as loading strip. The sensing area featured a 10 mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}m wide open-ing in the loading material with a sensing length of 5 mm. The homogeneous sensitivity was experimentally determined to be 0.128, demonstrating the effectiveness of the proposed design, which enabled a refractive index change monitoring of 10-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{-6}$$\end{document}.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Dumbbell-Shaped Mach-Zehnder Interferometer With High Sensitivity of Refractive Index
    Wen, Xiaodong
    Ning, Tigang
    You, Haidong
    Li, Jing
    Feng, Ting
    Pei, Li
    Jian, Wei
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (18) : 1839 - 1842
  • [32] Refractive index and temperature sensor based on Mach-Zehnder interferometer with thin fibers
    Liu, Wei
    Wu, Xuqiang
    Zhang, Gang
    Li, Shili
    Zuo, Cheng
    Fang, Shasha
    Yu, Benli
    OPTICAL FIBER TECHNOLOGY, 2020, 54
  • [33] Measurement of In-Fiber Refractive Index Change Using a Mach-Zehnder Interferometer
    Ahmed, Farid
    Ahsani, Vahid
    Jo, Seunghwan
    Bradley, Colin
    Toyserkani, Ehsan
    Jun, Martin B. G.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (01) : 74 - 77
  • [34] Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer
    Yu, Huaqing
    Xiong, Liangbin
    Chen, Zhihong
    Li, Qianguang
    Yi, Xunong
    Ding, Yu
    Wang, Feng
    Lv, Hao
    Ding, Yaoming
    OPTICS AND LASERS IN ENGINEERING, 2014, 56 : 50 - 53
  • [35] Refractive index sensor using microfiber-based Mach-Zehnder interferometer
    Wo, Jianghai
    Wang, Guanghui
    Cui, Ying
    Sun, Qizhen
    Liang, Ruibing
    Shum, Perry Ping
    Liu, Deming
    OPTICS LETTERS, 2012, 37 (01) : 67 - 69
  • [36] Measurement of refractive index and temperature using balloon shaped Mach-Zehnder interferometer
    Zhao, Lilong
    Liu, Bo
    Wu, Yongfeng
    Sun, Tingting
    Mao, Yaya
    Nan, Tong
    OPTIK, 2019, 188 : 115 - 119
  • [37] Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature
    Lu, Ping
    Men, Liqiu
    Sooley, Kevin
    Chen, Qiying
    APPLIED PHYSICS LETTERS, 2009, 94 (13)
  • [38] Mach-Zehnder Interferometer Based on a Sandwich Fiber Structure for Refractive Index Measurement
    Ma, Yue
    Qiao, Xueguang
    Guo, Tuan
    Wang, Ruohui
    Zhang, Jing
    Weng, Yinyan
    Rong, Qiangzhou
    Hu, Manli
    Feng, Zhongyao
    IEEE SENSORS JOURNAL, 2012, 12 (06) : 2081 - 2085
  • [39] A Mach-Zehnder interferometer based on peanut structure for temperature and refractive index measurement
    Yu, Xuelian
    Zuo, Shanshan
    Zhang, Yue
    Ma, Yiwei
    Wang, Ruoning
    Yang, Wenlei
    Tian, Ke
    Geng, Tao
    Wang, Pengfei
    OPTICAL REVIEW, 2022, 29 (06) : 492 - 497
  • [40] Mach-Zehnder Interferometer Refractive Index Sensor Based on a Plasmonic Channel Waveguide
    Lee, Da Eun
    Lee, Young Jin
    Shin, Eunso
    Kwon, Soon-Hong
    SENSORS, 2017, 17 (11):