The dimensions of the divergence points of self-similar measures with weak separation condition

被引:0
|
作者
Xiaoyao Zhou
Ercai Chen
机构
[1] Nanjing Normal University,School of Mathematical Science
[2] Center of Nonlinear Science,undefined
[3] Nanjing University,undefined
来源
关键词
Divergence points; Packing dimension; Hausdorff dimension; Moran structure; 37D35; 37A35;
D O I
暂无
中图分类号
学科分类号
摘要
Let μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} be the self-similar measure supported on the self-similar set K with the weak separation condition, which is weaker than the open set condition. This article uses Hausdorff dimension and packing dimension to investigate the multifractal structure of several sets of divergence points of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} in the iterated function system.
引用
收藏
页码:379 / 391
页数:12
相关论文
共 50 条
  • [41] Generating iterated function systems for self-similar sets with a separation condition
    Yao, Yuanyuan
    FUNDAMENTA MATHEMATICAE, 2017, 237 (02) : 127 - 133
  • [42] On univoque points for self-similar sets
    Baker, Simon
    Dajani, Karma
    Jiang, Kan
    FUNDAMENTA MATHEMATICAE, 2015, 228 (03) : 265 - 282
  • [43] Dimensions of the boundaries of self-similar sets
    Lau, KS
    Ngai, SM
    EXPERIMENTAL MATHEMATICS, 2003, 12 (01) : 13 - 26
  • [44] Quasiconformal dimensions of self-similar fractals
    Tyson, Jeremy T.
    Wu, Jang-Mei
    REVISTA MATEMATICA IBEROAMERICANA, 2006, 22 (01) : 205 - 258
  • [45] DIMENSIONS OF SUMS WITH SELF-SIMILAR SETS
    Oberlin, Daniel
    Oberlin, Richard
    COLLOQUIUM MATHEMATICUM, 2017, 147 (01) : 43 - 54
  • [46] Weak damped wave equations defined by a class of self-similar measures with overlaps
    Tang, Wei
    Wang, Zhiyong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 517 (02)
  • [47] Fourier bases on self-similar measures*
    Yin, Feng-Li
    He, Xing-Gang
    Zhang, Min-Min
    CHAOS SOLITONS & FRACTALS, 2023, 173
  • [48] On normal numbers and self-similar measures
    Algom, Amir
    Baker, Simon
    Shmerkin, Pablo
    ADVANCES IN MATHEMATICS, 2022, 399
  • [49] Singularity of a class of self-similar measures
    Niu, M.
    Xi, L.-F.
    CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 376 - 382
  • [50] The Construction of Statisticaly Self-similar Measures
    $$$$ Hu Dihe Department of Mathematics
    Wuhan University Journal of Natural Sciences, 1997, (01) : 21 - 26