The dimensions of the divergence points of self-similar measures with weak separation condition

被引:0
|
作者
Xiaoyao Zhou
Ercai Chen
机构
[1] Nanjing Normal University,School of Mathematical Science
[2] Center of Nonlinear Science,undefined
[3] Nanjing University,undefined
来源
关键词
Divergence points; Packing dimension; Hausdorff dimension; Moran structure; 37D35; 37A35;
D O I
暂无
中图分类号
学科分类号
摘要
Let μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} be the self-similar measure supported on the self-similar set K with the weak separation condition, which is weaker than the open set condition. This article uses Hausdorff dimension and packing dimension to investigate the multifractal structure of several sets of divergence points of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} in the iterated function system.
引用
收藏
页码:379 / 391
页数:12
相关论文
共 50 条
  • [31] Sufficient condition for a topological self-similar set to be a self-similar set
    Ni, Tianjia
    Wen, Zhiying
    TOPOLOGY AND ITS APPLICATIONS, 2024, 358
  • [32] Self-similar measures for iterated function systems driven by weak contractions
    Okamura, Kazuki
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2018, 94 (04) : 31 - 35
  • [33] Lq spectra and Renyi dimensions of in-homogeneous self-similar measures
    Olsen, L.
    Snigireva, N.
    NONLINEARITY, 2007, 20 (01) : 151 - 175
  • [34] Geometry of self-similar measures
    Moran, R
    Rey, JM
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1997, 22 (02): : 365 - 386
  • [35] FOURIER DECAY OF SELF-SIMILAR MEASURES AND SELF-SIMILAR SETS OF UNIQUENESS
    Varju, Peter P.
    Yu, Han
    ANALYSIS & PDE, 2022, 15 (03): : 843 - 858
  • [36] Self-similar sets and self-similar measures in the p-adics
    Hare, Kevin George
    Vavra, Tomas
    JOURNAL OF FRACTAL GEOMETRY, 2024, 11 (3-4) : 247 - 287
  • [37] SELF-SIMILAR MEASURES AND SEQUENCES
    BOREL, JP
    JOURNAL OF NUMBER THEORY, 1989, 31 (02) : 208 - 241
  • [38] Spectra of Self-Similar Measures
    Cao, Yong-Shen
    Deng, Qi-Rong
    Li, Ming-Tian
    ENTROPY, 2022, 24 (08)
  • [39] A characterization of self-similar measures
    Zheng, Shuicao
    Lin, Huonan
    CHAOS SOLITONS & FRACTALS, 2007, 34 (05) : 1613 - 1621
  • [40] On self-similar spectral measures
    An, Lixiang
    Wang, Cong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (03)