The dimensions of the divergence points of self-similar measures with weak separation condition

被引:0
|
作者
Xiaoyao Zhou
Ercai Chen
机构
[1] Nanjing Normal University,School of Mathematical Science
[2] Center of Nonlinear Science,undefined
[3] Nanjing University,undefined
来源
关键词
Divergence points; Packing dimension; Hausdorff dimension; Moran structure; 37D35; 37A35;
D O I
暂无
中图分类号
学科分类号
摘要
Let μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} be the self-similar measure supported on the self-similar set K with the weak separation condition, which is weaker than the open set condition. This article uses Hausdorff dimension and packing dimension to investigate the multifractal structure of several sets of divergence points of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} in the iterated function system.
引用
收藏
页码:379 / 391
页数:12
相关论文
共 50 条
  • [1] The dimensions of the divergence points of self-similar measures with weak separation condition
    Zhou, Xiaoyao
    Chen, Ercai
    MONATSHEFTE FUR MATHEMATIK, 2017, 183 (02): : 379 - 391
  • [2] Hausdorff dimensions of the divergence points of self-similar measures with the open set condition
    Li, Jinjun
    Wu, Min
    Xiong, Ying
    NONLINEARITY, 2012, 25 (01) : 93 - 105
  • [3] Packing dimensions of the divergence points of self-similar measures with OSC
    Xiaoyao Zhou
    Ercai Chen
    Monatshefte für Mathematik, 2013, 172 : 233 - 246
  • [4] Packing dimensions of the divergence points of self-similar measures with OSC
    Zhou, Xiaoyao
    Chen, Ercai
    MONATSHEFTE FUR MATHEMATIK, 2013, 172 (02): : 233 - 246
  • [5] The scenery flow of self-similar measures with weak separation condition
    Pyorala, Aleksi
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (10) : 3167 - 3190
  • [6] Multifractal formalism for self-similar measures with weak separation condition
    Feng, De-Jun
    Lau, Ka-Sing
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (04): : 407 - 428
  • [7] Mixed divergence points of self-similar measures
    Olsen, L
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (05) : 1343 - 1372
  • [8] Divergence points of self-similar measures and packing dimension
    Baek, I. S.
    Olsen, L.
    Snigireva, N.
    ADVANCES IN MATHEMATICS, 2007, 214 (01) : 267 - 287
  • [9] The sets of divergence points of self-similar measures are residual
    Li, Jinjun
    Wu, Min
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 404 (02) : 429 - 437
  • [10] Divergence points of self-similar measures satisfying the OSC
    Xiao, Jia-Qing
    Wu, Min
    Gao, Fei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) : 834 - 841