The Gray Monoidal Product of Double Categories

被引:0
|
作者
Gabriella Böhm
机构
[1] Wigner Research Centre for Physics,
来源
关键词
Double category; Gray monoidal product; Symmetric closed monoidal category;
D O I
暂无
中图分类号
学科分类号
摘要
The category of double categories and double functors is equipped with a symmetric closed monoidal structure. For any double category A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}}$$\end{document}, the corresponding internal hom functor [inline-graphic not available: see fulltext] sends a double category B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}$$\end{document} to the double category whose 0-cells are the double functors A→B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}} \rightarrow {\mathbb {B}}$$\end{document}, whose horizontal and vertical 1-cells are the horizontal and vertical pseudo transformations, respectively, and whose 2-cells are the modifications. Some well-known functors of practical significance are checked to be compatible with this monoidal structure.
引用
收藏
页码:477 / 515
页数:38
相关论文
共 50 条
  • [41] COHERENT PRESENTATIONS OF MONOIDAL CATEGORIES
    Curien, Pierre-Louis
    Mimram, Samuel
    LOGICAL METHODS IN COMPUTER SCIENCE, 2017, 13 (03)
  • [42] COMPLETION OF CLOSED MONOIDAL CATEGORIES
    CHARTREL.M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (09): : 710 - &
  • [43] Coherence of Involutive Monoidal Categories
    Yau, Donald
    INVOLUTIVE CATEGORY THEORY, 2020, 2279 : 107 - 144
  • [44] Braided and coboundary monoidal categories
    Savage, Alistair
    ALGEBRAS, REPRESENTATIONS AND APPLICATIONS, 2009, 483 : 229 - 251
  • [45] OPERADS FOR SYMMETRIC MONOIDAL CATEGORIES
    Elmendorf, A. D.
    THEORY AND APPLICATIONS OF CATEGORIES, 2023, 39 : 535 - 544
  • [46] Sheaf representation of monoidal categories
    Barbosa, Rui Soares
    Heunen, Chris
    ADVANCES IN MATHEMATICS, 2023, 416
  • [47] Coherence in monoidal track categories
    Guiraud, Yves
    Malbos, Philippe
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2012, 22 (06) : 931 - 969
  • [48] Monads on Higher Monoidal Categories
    Aguiar, Marcelo
    Haim, Mariana
    Lopez Franco, Ignacio
    APPLIED CATEGORICAL STRUCTURES, 2018, 26 (03) : 413 - 458
  • [49] Hopf monads on monoidal categories
    Bruguieres, Alain
    Lack, Steve
    Virelizier, Alexis
    ADVANCES IN MATHEMATICS, 2011, 227 (02) : 745 - 800
  • [50] BRAIDED SKEW MONOIDAL CATEGORIES
    Bourke, John
    Lack, Stephen
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 19 - 63