The Gray Monoidal Product of Double Categories

被引:0
|
作者
Gabriella Böhm
机构
[1] Wigner Research Centre for Physics,
来源
关键词
Double category; Gray monoidal product; Symmetric closed monoidal category;
D O I
暂无
中图分类号
学科分类号
摘要
The category of double categories and double functors is equipped with a symmetric closed monoidal structure. For any double category A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}}$$\end{document}, the corresponding internal hom functor [inline-graphic not available: see fulltext] sends a double category B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}$$\end{document} to the double category whose 0-cells are the double functors A→B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}} \rightarrow {\mathbb {B}}$$\end{document}, whose horizontal and vertical 1-cells are the horizontal and vertical pseudo transformations, respectively, and whose 2-cells are the modifications. Some well-known functors of practical significance are checked to be compatible with this monoidal structure.
引用
收藏
页码:477 / 515
页数:38
相关论文
共 50 条
  • [31] Free skew monoidal categories
    Bourke, John
    Lack, Stephen
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (10) : 3255 - 3281
  • [32] Modules in monoidal model categories
    Lewis, L. Gaunce, Jr.
    Mandell, Michael A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) : 395 - 421
  • [33] Monads on Higher Monoidal Categories
    Marcelo Aguiar
    Mariana Haim
    Ignacio López Franco
    Applied Categorical Structures, 2018, 26 : 413 - 458
  • [34] GALOIS THEORY IN MONOIDAL CATEGORIES
    LIGON, TS
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (01): : 1 - 3
  • [35] Normed symmetric monoidal categories
    Rubin, Jonathan
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2025,
  • [36] Symmetric Monoidal Categories with Attributes
    Breiner, Spencer
    Nolan, John S.
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2021, (333): : 33 - 48
  • [37] POISSON BOUNDARIES OF MONOIDAL CATEGORIES
    Neshveyev, Sergey
    Yamashita, Makot
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2017, 50 (04): : 927 - 972
  • [38] GROUP COMPLETING MONOIDAL CATEGORIES
    KETTNER, JE
    JOURNAL OF ALGEBRA, 1975, 37 (02) : 302 - 307
  • [39] Quantum doubles in monoidal categories
    Chen, HX
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (05) : 2303 - 2328
  • [40] Entwining structures in monoidal categories
    Mesablishvili, Bachuki
    JOURNAL OF ALGEBRA, 2008, 319 (06) : 2496 - 2517