On Degree Sum Conditions and Vertex-Disjoint Chorded Cycles

被引:0
|
作者
Bradley Elliott
Ronald J. Gould
Kazuhide Hirohata
机构
[1] University of Kentucky,Department of Mathematics
[2] Emory University,Department of Mathematics
[3] National Institute of Technology,Department of Industrial Engineering, Computer Science
[4] Ibaraki College,undefined
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Vertex-disjoint chorded cycles; Minimum degree sum; Degree sequence; Biconnected components; Blocks;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a general degree sum condition sufficient to imply the existence of k vertex-disjoint chorded cycles in a graph G. Let σt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _t(G)$$\end{document} be the minimum degree sum of t independent vertices of G. We prove that if G is a graph of sufficiently large order and σt(G)≥3kt-t+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _t(G)\ge 3kt-t+1$$\end{document} with k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, then G contains k vertex-disjoint chorded cycles. We also show that the degree sum condition on σt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _t(G)$$\end{document} is sharp. To do this, we also investigate graphs without chorded cycles.
引用
收藏
页码:1927 / 1945
页数:18
相关论文
共 50 条
  • [41] Vertex-disjoint directed and undirected cycles in general digraphs
    Bang-Jensen, Jorgen
    Kriesell, Matthias
    Maddaloni, Alessandro
    Simonsen, Sven
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 106 : 1 - 14
  • [42] Vertex-disjoint cycles of different lengths in multipartite tournaments
    Hung, Le Xuan
    Hieu, Do Duy
    Tan, Ngo Dac
    DISCRETE MATHEMATICS, 2022, 345 (06)
  • [43] Disjoint cycles in graphs with distance degree sum conditions
    Jiao, Zhihui
    Wang, Hong
    Yan, Jin
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1203 - 1209
  • [44] Degree sum conditions on two disjoint cycles in graphs
    Yan, Jin
    Zhang, Shaohua
    Ren, Yanyan
    Cai, Junqing
    INFORMATION PROCESSING LETTERS, 2018, 138 : 7 - 11
  • [45] Vertex-Disjoint Cycles of Different Lengths in Local Tournaments
    Hung, Le Xuan
    Tan, Ngo Dac
    GRAPHS AND COMBINATORICS, 2023, 39 (05)
  • [46] Biased graphs with no two vertex-disjoint unbalanced cycles
    Chen, Rong
    Pivotto, Irene
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 130 : 207 - 245
  • [47] Vertex-Disjoint Cycles Containing Specified Vertices in a Graph
    Egawa, Yoshimi
    Matsubara, Ryota
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2006, 3 (01) : 65 - 92
  • [48] Vertex-disjoint directed cycles of prescribed length in tournaments with given minimum out-degree and in-degree
    Lichiardopol, Nicolas
    DISCRETE MATHEMATICS, 2010, 310 (19) : 2567 - 2570
  • [49] Vertex-disjoint short cycles containing specified edges in a graph
    Matsumura, Hajime
    ARS COMBINATORIA, 2006, 80 : 147 - 152
  • [50] Vertex-Disjoint Cycles Containing Specified Vertices in a Bipartite Graph
    Zhang, Shaohua
    Yan, Jin
    Jiang, Suyun
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 2171 - 2181