On Degree Sum Conditions and Vertex-Disjoint Chorded Cycles

被引:0
|
作者
Bradley Elliott
Ronald J. Gould
Kazuhide Hirohata
机构
[1] University of Kentucky,Department of Mathematics
[2] Emory University,Department of Mathematics
[3] National Institute of Technology,Department of Industrial Engineering, Computer Science
[4] Ibaraki College,undefined
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Vertex-disjoint chorded cycles; Minimum degree sum; Degree sequence; Biconnected components; Blocks;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a general degree sum condition sufficient to imply the existence of k vertex-disjoint chorded cycles in a graph G. Let σt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _t(G)$$\end{document} be the minimum degree sum of t independent vertices of G. We prove that if G is a graph of sufficiently large order and σt(G)≥3kt-t+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _t(G)\ge 3kt-t+1$$\end{document} with k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, then G contains k vertex-disjoint chorded cycles. We also show that the degree sum condition on σt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _t(G)$$\end{document} is sharp. To do this, we also investigate graphs without chorded cycles.
引用
收藏
页码:1927 / 1945
页数:18
相关论文
共 50 条
  • [31] Vertex-disjoint cycles in local tournaments
    Li, Ruijuan
    Liang, Juanjuan
    Zhang, Xinhong
    Guo, Yubao
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [32] ON THE NUMBER OF VERTEX-DISJOINT CYCLES IN DIGRAPHS
    Bai, Yandong
    Manoussakis, Yannis
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (04) : 2444 - 2451
  • [33] Disjoint cycles and chorded cycles in a graph with given minimum degree
    Molla, Theodore
    Santana, Michael
    Yeager, Elyse
    DISCRETE MATHEMATICS, 2020, 343 (06)
  • [34] Large Vertex-Disjoint Cycles in a Bipartite Graph
    Hong Wang
    Graphs and Combinatorics, 2000, 16 : 359 - 366
  • [35] Vertex-disjoint cycles of the same length in tournaments
    Wang, Zhilan
    Qi, Yuzhen
    Yan, Jin
    JOURNAL OF GRAPH THEORY, 2023, 102 (04) : 666 - 683
  • [36] Vertex-disjoint cycles containing specified edges
    Egawa, Y
    Faudree, RJ
    Györi, E
    Ishigami, Y
    Schelp, RH
    Wang, H
    GRAPHS AND COMBINATORICS, 2000, 16 (01) : 81 - 92
  • [37] Large vertex-disjoint cycles in a bipartite graph
    Wang, H
    GRAPHS AND COMBINATORICS, 2000, 16 (03) : 359 - 366
  • [38] Vertex-disjoint cycles containing prescribed vertices
    Ishigami, Y
    Jiang, T
    JOURNAL OF GRAPH THEORY, 2003, 42 (04) : 276 - 296
  • [39] Vertex-Disjoint Cycles Containing Specified Edges
    Yoshimi Egawa
    Ralph J. Faudree
    Ervin Györi
    Yoshiyasu Ishigami
    Richard H. Schelp
    Hong Wang
    Graphs and Combinatorics, 2000, 16 : 81 - 92
  • [40] Vertex-Disjoint Cycles of Different Lengths in Local Tournaments
    Le Xuan Hung
    Ngo Dac Tan
    Graphs and Combinatorics, 2023, 39