On Degree Sum Conditions and Vertex-Disjoint Chorded Cycles

被引:0
|
作者
Bradley Elliott
Ronald J. Gould
Kazuhide Hirohata
机构
[1] University of Kentucky,Department of Mathematics
[2] Emory University,Department of Mathematics
[3] National Institute of Technology,Department of Industrial Engineering, Computer Science
[4] Ibaraki College,undefined
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Vertex-disjoint chorded cycles; Minimum degree sum; Degree sequence; Biconnected components; Blocks;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a general degree sum condition sufficient to imply the existence of k vertex-disjoint chorded cycles in a graph G. Let σt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _t(G)$$\end{document} be the minimum degree sum of t independent vertices of G. We prove that if G is a graph of sufficiently large order and σt(G)≥3kt-t+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _t(G)\ge 3kt-t+1$$\end{document} with k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, then G contains k vertex-disjoint chorded cycles. We also show that the degree sum condition on σt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _t(G)$$\end{document} is sharp. To do this, we also investigate graphs without chorded cycles.
引用
收藏
页码:1927 / 1945
页数:18
相关论文
共 50 条
  • [1] On Degree Sum Conditions and Vertex-Disjoint Chorded Cycles
    Elliott, Bradley
    Gould, Ronald J.
    Hirohata, Kazuhide
    GRAPHS AND COMBINATORICS, 2020, 36 (06) : 1927 - 1945
  • [2] On Vertex-Disjoint Chorded Cycles and Degree Sum Conditions
    Gould, Ronald J.
    Hirohata, Kazuhide
    Rorabaugh, Ariel Keller
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2024, 120 : 75 - 90
  • [3] On vertex-disjoint cycles and degree sum conditions
    Gould, Ronald J.
    Hirohata, Kazuhide
    Keller, Ariel
    DISCRETE MATHEMATICS, 2018, 341 (01) : 203 - 212
  • [4] Degree sum conditions and vertex-disjoint cycles in graph
    Fujita, Shinya
    Matsumura, Hajime
    Tsugaki, Masao
    Yamashita, Tomoki
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 237 - 251
  • [5] Vertex-disjoint chorded cycles in a graph
    Qiao, Shengning
    Zhang, Shenggui
    OPERATIONS RESEARCH LETTERS, 2010, 38 (06) : 564 - 566
  • [6] A Refinement of Theorems on Vertex-Disjoint Chorded Cycles
    Molla, Theodore
    Santana, Michael
    Yeager, Elyse
    GRAPHS AND COMBINATORICS, 2017, 33 (01) : 181 - 201
  • [7] A Refinement of Theorems on Vertex-Disjoint Chorded Cycles
    Theodore Molla
    Michael Santana
    Elyse Yeager
    Graphs and Combinatorics, 2017, 33 : 181 - 201
  • [8] On independent triples and vertex-disjoint chorded cycles in graphs
    Gould, Ronald J.
    Hirohata, Kazuhide
    Rorabaugh, Ariel Keller
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 77 (PT 3): : 355 - 372
  • [9] Degree sum conditions for vertex-disjoint cycles passing through specified vertices
    Chiba, Shuya
    Yamashita, Tomoki
    DISCRETE MATHEMATICS, 2017, 340 (04) : 678 - 690
  • [10] Vertex-disjoint double chorded cycles in bipartite graphs
    Gao, Yunshu
    Lin, Xiaoyao
    Wang, Hong
    DISCRETE MATHEMATICS, 2019, 342 (09) : 2482 - 2492