Non-metric geometry as the origin of mass in gauge theories of scale invariance

被引:0
|
作者
D. M. Ghilencea
机构
[1] National Institute of Physics and Nuclear Engineering (IFIN),Department of Theoretical Physics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We discuss gauge theories of scale invariance beyond the Standard Model (SM) and Einstein gravity. A consequence of gauging this symmetry is that their underlying 4D geometry is non-metric (∇μgαβ≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla _\mu g_{\alpha \beta }\!\not =\!0$$\end{document}). Examples of such theories are Weyl’s original quadratic gravity theory and its Palatini version. These theories have spontaneous breaking of the gauged scale symmetry to Einstein gravity. All mass scales have a geometric origin: the Planck scale (Mp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_p$$\end{document}), cosmological constant (Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}) and the mass of the Weyl gauge boson (ωμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _\mu $$\end{document}) of scale symmetry are proportional to a scalar field vev that has an origin in the (geometric) R~2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{R}}^2$$\end{document} term in the action. With ωμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _\mu $$\end{document} of non-metric geometry origin, the SM Higgs field also has a similar origin, generated by Weyl boson fusion in the early Universe. This appears as a microscopic realisation of “matter creation from geometry” discussed in the thermodynamics of open systems applied to cosmology. Unlike in local scale invariant theories (with no ωμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _\mu $$\end{document} present) with an underlying pseudo-Riemannian geometry, in our case: (1) there are no ghosts and no additional fields beyond the SM and underlying Weyl or Palatini geometry, (2) the cosmological constant is positive and is small because gravity is weak, (3) the Weyl or Palatini connection shares the Weyl (gauge) symmetry of the action, and: (4) there exists a non-trivial, conserved Weyl current of this symmetry. An intuitive picture of non-metricity and its relation to mass generation is also provided from a solid state physics perspective where it is common and is associated with point defects (metric anomalies) of the crystalline structure.
引用
收藏
相关论文
共 50 条
  • [21] Gauge Theories and non-Commutative Geometry A review
    Iliopoulos, John
    6TH INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS (ICNFP 2017), 2018, 182
  • [22] Non-metric distance judgements are influenced by image projection geometry and field of view
    Ruta, Nicole
    Ganczarek, Joanna
    Pietras, Karolina
    Burleigh, Alistair
    Pepperell, Robert
    QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2023, 76 (12): : 2837 - 2853
  • [24] Metric Projective Geometry, BGG Detour Complexes and Partially Massless Gauge Theories
    Gover, A. Rod
    Latini, Emanuele
    Waldron, Andrew
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (02) : 667 - 697
  • [25] Metric Projective Geometry, BGG Detour Complexes and Partially Massless Gauge Theories
    A. Rod Gover
    Emanuele Latini
    Andrew Waldron
    Communications in Mathematical Physics, 2016, 341 : 667 - 697
  • [26] On the origin of the mass gap for non-Abelian gauge theories in (2+1) dimensions
    Karabali, D
    Nair, VP
    PHYSICS LETTERS B, 1996, 379 (1-4) : 141 - 147
  • [27] CONSEQUENCES OF GAUGE-INVARIANCE FOR THE INTERACTING VERTICES IN NON-ABELIAN GAUGE-THEORIES
    KIM, SK
    BAKER, M
    NUCLEAR PHYSICS B, 1980, 164 (01) : 152 - 170
  • [28] THE GEOMETRY OF THE CONFIGURATION SPACE OF NON ABELIAN GAUGE-THEORIES
    VIALLET, CM
    LECTURE NOTES IN PHYSICS, 1983, 176 : 116 - 119
  • [29] Non-metric similarity search of tandem mass spectra including posttranslational modifications
    Novak, Jiri
    Skopal, Tomas
    Hoksza, David
    Lokoc, Jakub
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 13 : 19 - 31
  • [30] Parametrised Hausdorff Distance as a Non-Metric Similarity Model for Tandem Mass Spectrometry
    Novak, Jiri
    Hoksza, David
    PROCEEDINGS OF THE DATESO 2010 WORKSHOP - DATESO DATABASES, TEXTS, SPECIFICATIONS, AND OBJECTS, 2010, 567 : 1 - 12