Non-metric geometry as the origin of mass in gauge theories of scale invariance

被引:0
|
作者
D. M. Ghilencea
机构
[1] National Institute of Physics and Nuclear Engineering (IFIN),Department of Theoretical Physics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We discuss gauge theories of scale invariance beyond the Standard Model (SM) and Einstein gravity. A consequence of gauging this symmetry is that their underlying 4D geometry is non-metric (∇μgαβ≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla _\mu g_{\alpha \beta }\!\not =\!0$$\end{document}). Examples of such theories are Weyl’s original quadratic gravity theory and its Palatini version. These theories have spontaneous breaking of the gauged scale symmetry to Einstein gravity. All mass scales have a geometric origin: the Planck scale (Mp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_p$$\end{document}), cosmological constant (Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}) and the mass of the Weyl gauge boson (ωμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _\mu $$\end{document}) of scale symmetry are proportional to a scalar field vev that has an origin in the (geometric) R~2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{R}}^2$$\end{document} term in the action. With ωμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _\mu $$\end{document} of non-metric geometry origin, the SM Higgs field also has a similar origin, generated by Weyl boson fusion in the early Universe. This appears as a microscopic realisation of “matter creation from geometry” discussed in the thermodynamics of open systems applied to cosmology. Unlike in local scale invariant theories (with no ωμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _\mu $$\end{document} present) with an underlying pseudo-Riemannian geometry, in our case: (1) there are no ghosts and no additional fields beyond the SM and underlying Weyl or Palatini geometry, (2) the cosmological constant is positive and is small because gravity is weak, (3) the Weyl or Palatini connection shares the Weyl (gauge) symmetry of the action, and: (4) there exists a non-trivial, conserved Weyl current of this symmetry. An intuitive picture of non-metricity and its relation to mass generation is also provided from a solid state physics perspective where it is common and is associated with point defects (metric anomalies) of the crystalline structure.
引用
收藏
相关论文
共 50 条
  • [11] ABELIAN GAUGE-INVARIANCE OF NON-ABELIAN GAUGE THEORIES
    BRANDT, RA
    WINGCHIU, N
    PHYSICAL REVIEW D, 1977, 15 (08) : 2235 - 2244
  • [12] The Color Gauge Invariance and a Possible Origin of Mass in QCD
    Gogokhia, V.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (11) : 3061 - 3082
  • [13] The Color Gauge Invariance and a Possible Origin of Mass in QCD
    V. Gogokhia
    International Journal of Theoretical Physics, 2009, 48 : 3061 - 3082
  • [14] INSTANTONS IN GAUGE-THEORIES WITH BROKEN SCALE-INVARIANCE - GAUGE-THEORIES WITH HIGGS FIELDS
    AGASYAN, NO
    KHOKHLACHEV, SB
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1992, 55 (04): : 633 - 638
  • [15] Quantum scale invariance in gauge theories and applications to muon production
    Weisswange, M.
    Ghilencea, M.
    Stoeckinger, D.
    PHYSICAL REVIEW D, 2023, 107 (08)
  • [16] Gauge theories and non-commutative geometry
    Iliopoulos, J
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2006, 54 (2-3): : 139 - 145
  • [17] Gauge theories and non-commutative geometry
    Floratos, EG
    Iliopoulos, J
    PHYSICS LETTERS B, 2006, 632 (04) : 566 - 570
  • [18] Non-Abelian gauge theories as a consequence of perturbative quantum gauge invariance
    Aste, A
    Scharf, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (21): : 3421 - 3432
  • [19] Gravitational waves in f(Q) non-metric gravity without gauge fixing
    Capozziello, Salvatore
    Capriolo, Maurizio
    PHYSICS OF THE DARK UNIVERSE, 2024, 45
  • [20] On the origin of the mass gap for non-Abelian gauge theories in (2 + 1) dimensions
    Phys Lett Sect B Nucl Elem Part High Energy Phys, 1-4 (141):