Chronic kidney disease prediction using machine learning techniques

被引:0
|
作者
Dibaba Adeba Debal
Tilahun Melak Sitote
机构
[1] Madda Walabu University,Department of Information Science, College of Computing
[2] Adama Science and Technology University,Department of Computer Science and Engineering, School of Electrical Engineering and Computing
来源
关键词
Chronic Kidney Disease (CKD); Machine Learning; Random Forest (RF); Support Vector Machine (SVM);
D O I
暂无
中图分类号
学科分类号
摘要
Goal three of the UN’s Sustainable Development Goal is good health and well-being where it clearly emphasized that non-communicable diseases is emerging challenge. One of the objectives is to reduce premature mortality from non-communicable disease by third in 2030. Chronic kidney disease (CKD) is among the significant contributor to morbidity and mortality from non-communicable diseases that can affected 10–15% of the global population. Early and accurate detection of the stages of CKD is believed to be vital to minimize impacts of patient’s health complications such as hypertension, anemia (low blood count), mineral bone disorder, poor nutritional health, acid base abnormalities, and neurological complications with timely intervention through appropriate medications. Various researches have been carried out using machine learning techniques on the detection of CKD at the premature stage. Their focus was not mainly on the specific stages prediction. In this study, both binary and multi classification for stage prediction have been carried out. The prediction models used include Random Forest (RF), Support Vector Machine (SVM) and Decision Tree (DT). Analysis of variance and recursive feature elimination using cross validation have been applied for feature selection. Evaluation of the models was done using tenfold cross-validation. The results from the experiments indicated that RF based on recursive feature elimination with cross validation has better performance than SVM and DT.
引用
收藏
相关论文
共 50 条
  • [41] Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques
    Mohan, Senthilkumar
    Thirumalai, Chandrasegar
    Srivastava, Gautam
    IEEE ACCESS, 2019, 7 : 81542 - 81554
  • [42] Thyroid Disease Prediction Using Selective Features and Machine Learning Techniques
    Chaganti, Rajasekhar
    Rustam, Furqan
    De la Torre Diez, Isabel
    Vidal Mazon, Juan Luis
    Lili Rodriguez, Carmen
    Ashraf, Imran
    CANCERS, 2022, 14 (16)
  • [43] Creutzfeldt-Jakob Disease Prediction Using Machine Learning Techniques
    Bhakta, Arnav
    Byrne, Carolyn
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021), 2021, : 535 - 542
  • [44] Automated prediction of Heart disease using optimized machine learning techniques
    Alqahtani, Lama A.
    Alotaibi, Hanadi M.
    Khan, Irfan Ullah
    Aslam, Nida
    2020 11TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2020, : 298 - 302
  • [45] The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models
    Zixiang Ye
    Shuoyan An
    Yanxiang Gao
    Enmin Xie
    Xuecheng Zhao
    Ziyu Guo
    Yike Li
    Nan Shen
    Jingyi Ren
    Jingang Zheng
    European Journal of Medical Research, 28
  • [46] The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models
    Ye, Zixiang
    An, Shuoyan
    Gao, Yanxiang
    Xie, Enmin
    Zhao, Xuecheng
    Guo, Ziyu
    Li, Yike
    Shen, Nan
    Ren, Jingyi
    Zheng, Jingang
    EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2023, 28 (01)
  • [47] Food Recommendation using Machine Learning for Chronic Kidney Disease Patients
    Banerjee, Anonnya
    Noor, Alaa
    Siddiqua, Nasrin
    Uddin, Mohammed Nazim
    2019 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI - 2019), 2019,
  • [48] Diagnosis of Chronic Ischemic Heart Disease Using Machine Learning Techniques
    Shehzadi, Shumaila
    Hassan, Muhammad Abul
    Rizwan, Muhammad
    Kryvinska, Natalia
    Vincent, Karovic
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [49] Performance Evaluation and Comparative Analysis of Machine Learning Techniques to Predict the Chronic Kidney Disease
    Malik, Majid Bashir
    Ali, Mohd
    Bashir, Sadiya
    Ganie, Shahid Mohammad
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 2, AITA 2023, 2024, 844 : 473 - 486
  • [50] An Intelligent Heart Disease Prediction Framework Using Machine Learning and Deep Learning Techniques
    Allheeib, Nasser
    Kanwal, Summrina
    Alamri, Sultan
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2023, 19 (01)