Chronic kidney disease prediction using machine learning techniques

被引:0
|
作者
Dibaba Adeba Debal
Tilahun Melak Sitote
机构
[1] Madda Walabu University,Department of Information Science, College of Computing
[2] Adama Science and Technology University,Department of Computer Science and Engineering, School of Electrical Engineering and Computing
来源
关键词
Chronic Kidney Disease (CKD); Machine Learning; Random Forest (RF); Support Vector Machine (SVM);
D O I
暂无
中图分类号
学科分类号
摘要
Goal three of the UN’s Sustainable Development Goal is good health and well-being where it clearly emphasized that non-communicable diseases is emerging challenge. One of the objectives is to reduce premature mortality from non-communicable disease by third in 2030. Chronic kidney disease (CKD) is among the significant contributor to morbidity and mortality from non-communicable diseases that can affected 10–15% of the global population. Early and accurate detection of the stages of CKD is believed to be vital to minimize impacts of patient’s health complications such as hypertension, anemia (low blood count), mineral bone disorder, poor nutritional health, acid base abnormalities, and neurological complications with timely intervention through appropriate medications. Various researches have been carried out using machine learning techniques on the detection of CKD at the premature stage. Their focus was not mainly on the specific stages prediction. In this study, both binary and multi classification for stage prediction have been carried out. The prediction models used include Random Forest (RF), Support Vector Machine (SVM) and Decision Tree (DT). Analysis of variance and recursive feature elimination using cross validation have been applied for feature selection. Evaluation of the models was done using tenfold cross-validation. The results from the experiments indicated that RF based on recursive feature elimination with cross validation has better performance than SVM and DT.
引用
收藏
相关论文
共 50 条
  • [21] Heart Disease Prediction Using Machine Learning Techniques
    Sipail, Herold Sylvestro
    Ahmad, Norulhusna
    Noor, Norliza Mohd
    1ST NATIONAL BIOMEDICAL ENGINEERING CONFERENCE (NBEC 2021): ADVANCED TECHNOLOGY FOR MODERN HEALTHCARE, 2021, : 48 - 52
  • [22] Early Prediction of Chronic Kidney Disease Using Machine Learning Supported by Predictive Analytics
    Aljaaf, Ahmed J.
    Al-Jumeily, Dhiya
    Haglan, Hussein M.
    Alloghani, Mohamed
    Baker, Thar
    Hussain, Abir J.
    Mustafina, Jamila
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 251 - 259
  • [23] Prediction Chronic Kidney Disease Progression In Diabetic patients using Machine Learning Models
    Apiromrak, Wasawat
    Toh, Chanavee
    Sangthawan, Pornpen
    Ingviya, Thammasin
    2024 21ST INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING, JCSSE 2024, 2024, : 566 - 573
  • [24] Chronic Renal Disease Prediction using Clinical Data and Different Machine Learning Techniques
    Raihan, Md Mohsin Sarker
    Ahmed, Eshtiak
    Karim, Asif
    Azam, Sami
    Raihan, M.
    Akter, Laboni
    Hassan, Md Mehedi
    2ND INTERNATIONAL INFORMATICS AND SOFTWARE ENGINEERING CONFERENCE (IISEC), 2021,
  • [25] An Empirical Evaluation of Machine Learning Techniques for Chronic Kidney Disease Prophecy
    Khan, Bilal
    Naseem, Rashid
    Muhammad, Fazal
    Abbas, Ghulam
    Kim, Sunghwan
    IEEE ACCESS, 2020, 8 : 55012 - 55022
  • [26] Machine learning model for cardiovascular disease prediction in patients with chronic kidney disease
    Zhu, He
    Qiao, Shen
    Zhao, Delong
    Wang, Keyun
    Wang, Bin
    Niu, Yue
    Shang, Shunlai
    Dong, Zheyi
    Zhang, Weiguang
    Zheng, Ying
    Chen, Xiangmei
    FRONTIERS IN ENDOCRINOLOGY, 2024, 15
  • [27] Effective Heart Disease Prediction Using Machine Learning Techniques
    Bhatt, Chintan M.
    Patel, Parth
    Ghetia, Tarang
    Mazzeo, Pier Luigi
    ALGORITHMS, 2023, 16 (02)
  • [28] Survey on Heart Disease Prediction Using Machine Learning Techniques
    Kumar, Parvathaneni Rajendra
    Ravichandran, Suban
    Narayana, S.
    SOFT COMPUTING FOR SECURITY APPLICATIONS, ICSCS 2022, 2023, 1428 : 257 - 275
  • [29] An Effective Disease Prediction Algorithms Using Machine Learning Techniques
    Sirivanth, Paladugu
    Rao, N. V. Krishna
    Manduva, Jenvith
    Thirupathi, J.
    Kavya, S. P., V
    Tejaswini, M.
    Sruthi, K. Sai
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 502 - 507
  • [30] A Survey on Heart Disease Prediction Using Machine Learning Techniques
    Deepa, V. Amala
    Beena, T. Lucia Agnes
    APPLIED INTELLIGENCE AND INFORMATICS, AII 2023, 2024, 2065 : 243 - 254