On the Entropy of Spanning Trees on a Large Triangular Lattice

被引:0
|
作者
M. L. Glasser
F. Y. Wu
机构
[1] Clarkson University,Department of Physics
[2] Northeastern University,Department of Physics
来源
The Ramanujan Journal | 2005年 / 10卷
关键词
triangular lattice; spanning tree; dilogarithm;
D O I
暂无
中图分类号
学科分类号
摘要
The double integral representing the entropy Stri of spanning trees on a large triangular lattice is evaluated using two different methods, one algebraic and one graphical. Both methods lead to the same result \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ S_{\rm tri} = (4 \pi^2)^{-1} \int_{0}^{2 \pi} d \theta \int^{2 \pi}_{0}d \phi \ln {[}6-2 \cos \theta-2 \cos \phi-2 \cos (\theta + \phi){]} = (3 \sqrt{3}/\pi)(1-5^{-2} + 7^{-2} - 11^{-2} + 13^{-2}-\ldots).$$\end{document}
引用
收藏
页码:205 / 214
页数:9
相关论文
共 50 条
  • [31] On Polynomials of Spanning Trees
    F. Chung
    C. Yang
    Annals of Combinatorics, 2000, 4 (1) : 13 - 25
  • [32] Generalized spanning trees
    Dror, M
    Haouari, M
    Chaouachi, J
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 120 (03) : 583 - 592
  • [33] Minimal spanning trees
    Schmerl, JH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (02) : 333 - 340
  • [34] On encodings of spanning trees
    Hurlbert, Glenn H.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) : 2594 - 2600
  • [35] PROBLEM ON SPANNING TREES
    TUTTE, WT
    QUARTERLY JOURNAL OF MATHEMATICS, 1974, 25 (98): : 253 - 255
  • [36] Variations for spanning trees
    Zsako, Laszlo
    ANNALES MATHEMATICAE ET INFORMATICAE, 2006, 33 : 151 - 165
  • [37] Spanning Trees and Hamiltonicity
    Byers, Alexis
    Olejniczak, Drake
    Zayed, Mohra
    Zhang, Ping
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 110 : 61 - 71
  • [38] POPULAR SPANNING TREES
    Darmann, Andreas
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2013, 24 (05) : 655 - 677
  • [39] GENERATOR OF SPANNING TREES
    MCILROY, MD
    COMMUNICATIONS OF THE ACM, 1969, 12 (09) : 511 - &
  • [40] TRANSFORMATIONS ON SPANNING TREES
    CAHIT, I
    CAHIT, R
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1978, 21 (03): : 353 - 358