On the Entropy of Spanning Trees on a Large Triangular Lattice

被引:0
|
作者
M. L. Glasser
F. Y. Wu
机构
[1] Clarkson University,Department of Physics
[2] Northeastern University,Department of Physics
来源
The Ramanujan Journal | 2005年 / 10卷
关键词
triangular lattice; spanning tree; dilogarithm;
D O I
暂无
中图分类号
学科分类号
摘要
The double integral representing the entropy Stri of spanning trees on a large triangular lattice is evaluated using two different methods, one algebraic and one graphical. Both methods lead to the same result \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ S_{\rm tri} = (4 \pi^2)^{-1} \int_{0}^{2 \pi} d \theta \int^{2 \pi}_{0}d \phi \ln {[}6-2 \cos \theta-2 \cos \phi-2 \cos (\theta + \phi){]} = (3 \sqrt{3}/\pi)(1-5^{-2} + 7^{-2} - 11^{-2} + 13^{-2}-\ldots).$$\end{document}
引用
收藏
页码:205 / 214
页数:9
相关论文
共 50 条
  • [21] Ground state entropy of the Potts antiferromagnet on triangular lattice strips
    Chang, SC
    Shrock, R
    ANNALS OF PHYSICS, 2001, 290 (02) : 124 - 155
  • [22] Topological entanglement entropy in the quantum dimer model on the triangular lattice
    Furukawa, Shunsuke
    Misguich, Gregoire
    PHYSICAL REVIEW B, 2007, 75 (21):
  • [23] Spanning Trees
    Akiyama, Jin
    Kano, Mikio
    FACTORS AND FACTORIZATIONS OF GRAPHS: PROOF TECHNIQUES IN FACTOR THEORY, 2011, 2031 : 295 - 336
  • [24] SPANNING TREES
    不详
    JOURNAL OF HUMANISTIC MATHEMATICS, 2021, 11 (02): : 481 - 482
  • [25] Finding minimum label spanning trees using cross-entropy method
    Vaisman, Radislav
    NETWORKS, 2022, 79 (02) : 220 - 235
  • [26] ON THE NUMBER OF SPANNING-TREES FOR THE 3D SIMPLE CUBIC LATTICE
    ROSENGREN, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (14): : L923 - L927
  • [27] Competing phases of the Hubbard model on a triangular lattice: Insights from the entropy
    Li, Gang
    Antipov, Andrey E.
    Rubtsov, Alexey N.
    Kirchner, Stefan
    Hanke, Werner
    PHYSICAL REVIEW B, 2014, 89 (16):
  • [28] From Spanning Trees to Meshed Trees
    Acharya, H. B.
    Hamilton, John
    Shenoy, Nirmala
    2020 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2020,
  • [29] Spanning Trees: A Survey
    Kenta Ozeki
    Tomoki Yamashita
    Graphs and Combinatorics, 2011, 27 : 1 - 26
  • [30] Packing spanning trees
    1600, Inst of Management Sciences, Providence, RI, USA (20):