Almost Intersecting Families for Vector Spaces

被引:0
|
作者
Shan, Yunjing [1 ]
Zhou, Junling [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Almost intersecting family; Intersecting family; Covering number; Vector space; SYSTEMS; THEOREMS; NUMBER; PAIRS;
D O I
10.1007/s00373-024-02790-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be an n-dimensional vector space over the finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q}$$\end{document} and let Vkq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ \begin{array}{c} V \\ k \end{array}\right] _q$$\end{document} denote the family of all k-dimensional subspaces of V. A family F subset of Vkq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {F}}}\subseteq \left[ \begin{array}{c} V \\ k \end{array}\right] _q$$\end{document} is called intersecting if for all F, F 'is an element of F,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F'\in {{\mathcal {F}}},$$\end{document} we have dim(F boolean AND F ')>= 1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{dim}}(F\cap F')\ge 1.$$\end{document} A family F subset of Vkq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {F}}}\subseteq \left[ \begin{array}{c} V \\ k \end{array}\right] _q$$\end{document} is called almost intersecting if for every F is an element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\in {{\mathcal {F}}}$$\end{document} there is at most one element F 'is an element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F'\in {{\mathcal {F}}}$$\end{document} satisfying dim(F boolean AND F ')=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{dim}}(F\cap F')=0.$$\end{document} In this paper we investigate almost intersecting families in the vector space V. Firstly, for large n, we determine the maximum size of an almost intersecting family in Vkq,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ \begin{array}{c} V \\ k \end{array}\right] _q,$$\end{document} which is the same as that of an intersecting family. Secondly, we characterize the structures of all maximum almost intersecting families under the condition that they are not intersecting.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Orbits of families of vector fields on subcartesian spaces
    Sniatycki, J
    ANNALES DE L INSTITUT FOURIER, 2003, 53 (07) : 2257 - +
  • [22] A t-intersecting Hilton-Milner theorem for vector spaces
    Wang, Yunpeng
    Xu, Ao
    Yang, Jizhen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 680 : 220 - 238
  • [23] KERNELS OF OPERATORS ON BANACH SPACES INDUCED BY ALMOST DISJOINT FAMILIES
    Horvath, Bence
    Laustsen, Niels jakob
    HOUSTON JOURNAL OF MATHEMATICS, 2024, 50 (01): : 157 - 171
  • [24] Non-trivial t-intersecting families for symplectic polar spaces
    Yao, Tian
    Lv, Benjian
    Wang, Kaishun
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77
  • [25] ON INTERSECTING FAMILIES OF FINITE AFFINE AND LINEAR-SPACES OVER GF(Q)
    LEFMANN, H
    COMBINATORICS /, 1988, 52 : 365 - 374
  • [26] On shadows of intersecting families
    Ahlswede, R
    Aydinian, H
    Khachatrian, LH
    COMBINATORICA, 2004, 24 (04) : 555 - 566
  • [27] Triangles in intersecting families
    Nagy, Daniel T.
    Patkos, Balazs
    MATHEMATIKA, 2022, 68 (04) : 1073 - 1079
  • [28] Chain Intersecting Families
    Attila Bernáth
    Dániel Gerbner
    Graphs and Combinatorics, 2007, 23 : 353 - 366
  • [29] Intersecting families of permutations
    Cameron, PJ
    Ku, CY
    EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (07) : 881 - 890
  • [30] Families intersecting on an interval
    Russell, Paul A.
    DISCRETE MATHEMATICS, 2009, 309 (09) : 2952 - 2956