A t-intersecting Hilton-Milner theorem for vector spaces

被引:2
|
作者
Wang, Yunpeng [1 ]
Xu, Ao [2 ]
Yang, Jizhen [3 ]
机构
[1] Luoyang Inst Sci & Technol, Dept Math & Phys, Luoyang 471023, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Luoyang Normal Coll, Dept Math, Luoyang 471934, Peoples R China
基金
中国国家自然科学基金;
关键词
Hilton-Milner theorem; t-intersecting; Vector space; SYSTEMS;
D O I
10.1016/j.laa.2023.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be an n-dimensional vector space over a q-element field. For an integer t >= 2, a family Fof k-dimensional subspaces in Vis t-intersecting if dim(F-1 boolean AND F-2) >= t for any F-1, F-2 is an element of F, and non-trivial if dim(boolean AND F-F is an element of F) <= t - 1. In this paper, we determine the maximum sizes of the non-trivial t-intersecting families for n >= 2k+ 2, k= t+2, and the extremal structures of families with the maximum sizes have also been characterized. Our results extend the well-known Hilton-Milner theorem for vector spaces to the case of t-intersection. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 238
页数:19
相关论文
共 50 条
  • [1] A t-intersecting Hilton-Milner theorem for vector spaces for n=2k+1 and q ≥ 3
    Wang, Yunpeng
    Yang, Jizhen
    FILOMAT, 2024, 38 (28) : 9997 - 10011
  • [2] A Hilton-Milner Theorem for Vector Spaces
    Blokhuis, A.
    Brouwer, A. E.
    Chowdhury, A.
    Frankl, P.
    Mussche, T.
    Patkos, B.
    Szonyi, T.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [3] The Hilton-Milner theorem for attenuated spaces
    Hou, Bo
    Shan, Yunjing
    Gao, Suogang
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [4] The Hilton-Milner theorem for finite affine spaces
    Guo, Jun
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 : 151 - 166
  • [5] A degree version of the Hilton-Milner theorem
    Frankl, Peter
    Han, Jie
    Huang, Hao
    Zhao, Yi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 155 : 493 - 502
  • [6] Hilton-Milner results in projective and affine spaces
    D'haeseleer, Jozefien
    ADVANCES IN GEOMETRY, 2023, 23 (01) : 1 - 24
  • [7] An analogue of the Hilton-Milner theorem for set partitions
    Ku, Cheng Yeaw
    Wong, Kok Bin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) : 1508 - 1520
  • [8] AN ANALOGUE OF THE HILTON-MILNER THEOREM FOR WEAK COMPOSITIONS
    Ku, Cheng Yeaw
    Wong, Kok Bin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (03) : 1007 - 1025
  • [9] NONTRIVIAL t-INTERSECTING FAMILIES FOR VECTOR SPACES
    Cao, Mengyu
    Lv, Benjian
    Wang, Kaishun
    Zhou, Sanming
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) : 1823 - 1847
  • [10] The Hilton-Milner theorem for the distance-regular graphs of bilinear forms
    Gong, Chao
    Lv, Benjian
    Wang, Kaishun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 515 : 130 - 144