A t-intersecting Hilton-Milner theorem for vector spaces for n=2k+1 and q ≥ 3

被引:0
|
作者
Wang, Yunpeng [1 ]
Yang, Jizhen [2 ]
机构
[1] Luoyang Inst Sci & Technol, Dept Math & Phys, Luoyang 471023, Peoples R China
[2] Luoyang Normal Coll, Dept Math, Luoyang 471934, Peoples R China
基金
中国国家自然科学基金;
关键词
Hilton-Milner theorem; t-intersecting; vector spaces; SYSTEMS;
D O I
10.2298/FIL2428997W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be an n-dimensional vector space over GF(q) and [V k] denote the family of all k-dimensional subspaces of V. Suppose that F subset of [V k ] denotes a non-trivial t-intersecting family with t >= 2. Cao et al. [2] determined the structures of F with maximum size for large n. Wang et al. [12] improved the applicable range to n >= 2k + 2. In this paper, we determine the structures of F with maximum size for n = 2k + 1 and q >= 3.
引用
收藏
页码:9997 / 10011
页数:15
相关论文
共 50 条