The q, t-symmetry of the generalized q, t-Catalan number C(k1,k2,k3)(q,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{(k_1,k_2,k_3)}(q,t)$$\end{document}

被引:0
|
作者
Guoce Xin [1 ]
Yingrui Zhang [2 ]
机构
[1] Capital Normal University,School of Mathematical Sciences
[2] Yunnan University of Finance and Economics,School of Statistics and Mathematics
关键词
 ; -Catalan numbers;  ; -symmetric; MacMahon’s partition analysis.; Primary 05A19; Secondary 05E99;
D O I
10.1007/s10801-024-01374-3
中图分类号
学科分类号
摘要
We present two distinct proofs of the q, t-symmetry for the generalized q, t-Catalan number Ck→(q,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\vec {k}}(q,t)$$\end{document}, where k→=(k1,k2,k3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {k}=(k_1,k_2,k_3)$$\end{document}. The first proof is derived through the application of MacMahon’s partition analysis. The second proof is established via a direct bijection.
引用
收藏
相关论文
共 50 条