Almost Intersecting Families for Vector Spaces

被引:0
|
作者
Shan, Yunjing [1 ]
Zhou, Junling [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Almost intersecting family; Intersecting family; Covering number; Vector space; SYSTEMS; THEOREMS; NUMBER; PAIRS;
D O I
10.1007/s00373-024-02790-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be an n-dimensional vector space over the finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q}$$\end{document} and let Vkq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ \begin{array}{c} V \\ k \end{array}\right] _q$$\end{document} denote the family of all k-dimensional subspaces of V. A family F subset of Vkq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {F}}}\subseteq \left[ \begin{array}{c} V \\ k \end{array}\right] _q$$\end{document} is called intersecting if for all F, F 'is an element of F,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F'\in {{\mathcal {F}}},$$\end{document} we have dim(F boolean AND F ')>= 1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{dim}}(F\cap F')\ge 1.$$\end{document} A family F subset of Vkq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {F}}}\subseteq \left[ \begin{array}{c} V \\ k \end{array}\right] _q$$\end{document} is called almost intersecting if for every F is an element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\in {{\mathcal {F}}}$$\end{document} there is at most one element F 'is an element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F'\in {{\mathcal {F}}}$$\end{document} satisfying dim(F boolean AND F ')=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{dim}}(F\cap F')=0.$$\end{document} In this paper we investigate almost intersecting families in the vector space V. Firstly, for large n, we determine the maximum size of an almost intersecting family in Vkq,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ \begin{array}{c} V \\ k \end{array}\right] _q,$$\end{document} which is the same as that of an intersecting family. Secondly, we characterize the structures of all maximum almost intersecting families under the condition that they are not intersecting.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] FAMILIES OF INTERSECTING FINITE VECTOR-SPACES
    HSIEH, WN
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 18 (03) : 252 - 261
  • [2] Almost intersecting families
    Frankl, Peter
    Kupavskii, Andrey
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [3] NONTRIVIAL t-INTERSECTING FAMILIES FOR VECTOR SPACES
    Cao, Mengyu
    Lv, Benjian
    Wang, Kaishun
    Zhou, Sanming
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) : 1823 - 1847
  • [4] ALMOST INTERSECTING FAMILIES OF SETS
    Gerbner, Daniel
    Lemons, Nathan
    Palmer, Cory
    Patkos, Balazs
    Szecsi, Vajk
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (04) : 1657 - 1669
  • [5] Modular and fractional L-intersecting families of vector spaces
    Mathew, Rogers
    Mishra, Tapas Kumar
    Ray, Ritabrat A.
    Srivastava, Shashank
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):
  • [6] r-cross t-intersecting families for vector spaces
    Cao, Mengyu
    Lu, Mei
    Lv, Benjian
    Wang, Kaishun
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 193
  • [7] ALMOST DISJOINT AND MAD FAMILIES IN VECTOR SPACES AND CHOICE PRINCIPLES
    Tachtsis, Eleftherios
    JOURNAL OF SYMBOLIC LOGIC, 2022, 87 (03) : 1093 - 1110
  • [8] More on r-cross t-intersecting families for vector spaces
    Yao, Tian
    Liu, Dehai
    Wang, Kaishun
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2025, 213
  • [9] Intersecting chains in finite vector spaces
    Czabarka, E
    COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (06): : 509 - 528
  • [10] A coloring problem for intersecting vector spaces
    Hoppen, Carlos
    Lefmann, Hanno
    Odermann, Knut
    DISCRETE MATHEMATICS, 2016, 339 (12) : 2941 - 2954