Almost intersecting families

被引:2
|
作者
Frankl, Peter [1 ,2 ]
Kupavskii, Andrey [2 ,3 ]
机构
[1] Renyi Inst, Budapest, Hungary
[2] MIPT, Moscow, Russia
[3] Univ Grenobles Alpes, CNRS, Grenoble, France
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2021年 / 28卷 / 02期
关键词
THEOREMS; SYSTEMS;
D O I
10.37236/9609
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n > k > 1 be integers, [n] = {1, ..., n}. Let F be a family of k-subsets of [n]. The family F is called intersecting if F boolean AND F' not equal empty set for all F, F' is an element of F. It is called almost intersecting if it is not intersecting but to every F is an element of F there is at most one F' is an element of F satisfying F boolean AND F' = empty set. Gerbner et al. proved that if n >= 2k + 2 then vertical bar F vertical bar <= (n-1 k-1) holds for almost intersecting families. Our main result implies the considerably stronger and best possible bound vertical bar F vertical bar <= (n-1 k-1) - (n-k-1 k-1) + 2 for n > (2 + o(1))k, k >= 3.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] ALMOST INTERSECTING FAMILIES OF SETS
    Gerbner, Daniel
    Lemons, Nathan
    Palmer, Cory
    Patkos, Balazs
    Szecsi, Vajk
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (04) : 1657 - 1669
  • [2] Almost Intersecting Families for Vector Spaces
    Shan, Yunjing
    Zhou, Junling
    GRAPHS AND COMBINATORICS, 2024, 40 (03)
  • [3] Almost Cross-Intersecting and Almost Cross-Sperner Pairs of Families of Sets
    Gerbner, Daniel
    Lemons, Nathan
    Palmer, Cory
    Palvoelgyi, Doemoetoer
    Patkos, Balazs
    Szecsi, Vajk
    GRAPHS AND COMBINATORICS, 2013, 29 (03) : 489 - 498
  • [4] Almost Cross-Intersecting and Almost Cross-Sperner Pairs of Families of Sets
    Dániel Gerbner
    Nathan Lemons
    Cory Palmer
    Dömötör Pálvölgyi
    Balázs Patkós
    Vajk Szécsi
    Graphs and Combinatorics, 2013, 29 : 489 - 498
  • [5] On shadows of intersecting families
    Ahlswede, R
    Aydinian, H
    Khachatrian, LH
    COMBINATORICA, 2004, 24 (04) : 555 - 566
  • [6] Triangles in intersecting families
    Nagy, Daniel T.
    Patkos, Balazs
    MATHEMATIKA, 2022, 68 (04) : 1073 - 1079
  • [7] Chain Intersecting Families
    Attila Bernáth
    Dániel Gerbner
    Graphs and Combinatorics, 2007, 23 : 353 - 366
  • [8] Intersecting families of permutations
    Cameron, PJ
    Ku, CY
    EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (07) : 881 - 890
  • [9] Families intersecting on an interval
    Russell, Paul A.
    DISCRETE MATHEMATICS, 2009, 309 (09) : 2952 - 2956
  • [10] Intersecting families of transformations
    Sonmez, Demet Parlak
    Sonmez, Orhan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,