On graphs in which the neighborhoods of vertices are strongly regular with eigenvalue 2

被引:0
|
作者
A. A. Makhnev
M. S. Nirova
机构
[1] Russian Academy of Sciences,Institute of Mathematics and Mechanics, Ural Branch
来源
Doklady Mathematics | 2012年 / 85卷
关键词
Regular Graph; DOKLADY Mathematic; Generalize Quadrangle; Partial Geometry; Neigh Borhoods;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:363 / 366
页数:3
相关论文
共 50 条
  • [31] Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph
    A. A. Makhnev
    D. V. Paduchikh
    Proceedings of the Steklov Institute of Mathematics, 2013, 283 : 91 - 99
  • [32] Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph
    Makhnev, A. A.
    Paduchikh, D. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 283 : 91 - 99
  • [33] Graphs in which the neighborhoods of vertices are pseudogeometric graphs for GQ(3, 3)
    A. K. Gutnova
    A. A. Makhnev
    Doklady Mathematics, 2010, 82 : 609 - 612
  • [34] Graphs in which the neighborhoods of vertices are pseudogeometric graphs for GQ(3, 5)
    A. K. Gutnova
    A. A. Makhnev
    Doklady Mathematics, 2011, 83 : 376 - 379
  • [35] Exceptional strongly regular graphs with eigenvalue 3
    A. A. Makhnev
    D. V. Paduchikh
    Doklady Mathematics, 2014, 89 : 20 - 23
  • [36] On strongly regular graphs with eigenvalue 3 and their extensions
    A. A. Makhnev
    Doklady Mathematics, 2013, 88 : 453 - 456
  • [37] Exceptional strongly regular graphs with eigenvalue 3
    Makhnev, A. A.
    Paduchikh, D. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (04): : 167 - 174
  • [38] Exceptional Strongly Regular Graphs with Eigenvalue 3
    Makhnev, A. A.
    Paduchikh, D. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 287 : S93 - S101
  • [39] On extensions of strongly regular graphs with eigenvalue 4
    Makhnev, A. A.
    Paduchikh, D., V
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2015, 21 (03): : 233 - 255
  • [40] On strongly regular graphs with eigenvalue mu and their extensions
    Makhnev, A. A.
    Paduchikh, D. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (03): : 207 - 214