On graphs in which the neighborhoods of vertices are strongly regular with eigenvalue 2

被引:0
|
作者
A. A. Makhnev
M. S. Nirova
机构
[1] Russian Academy of Sciences,Institute of Mathematics and Mechanics, Ural Branch
来源
Doklady Mathematics | 2012年 / 85卷
关键词
Regular Graph; DOKLADY Mathematic; Generalize Quadrangle; Partial Geometry; Neigh Borhoods;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:363 / 366
页数:3
相关论文
共 50 条
  • [21] Distance regular graphs in which local subgraphs are strongly regular graphs with the second eigenvalue at most 3
    Makhnev, A. A.
    Paduchikh, D. V.
    DOKLADY MATHEMATICS, 2015, 92 (02) : 568 - 571
  • [22] On graphs in which the neighborhoods of vertices are pseudogeometric graphs for pGs − 2(s, t)
    A. K. Gutnova
    A. A. Makhnev
    Doklady Mathematics, 2010, 81 : 222 - 226
  • [23] On graphs in which all neighborhoods of vertices are locally pseudocyclic graphs
    Kabanov, V. V.
    Makhnev, A. A.
    DOKLADY MATHEMATICS, 2014, 89 (01) : 76 - 79
  • [24] On strongly regular graphs with eigenvalue μ and their extensions
    Makhnev, A. A.
    Paduchikh, D. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 285 : S128 - S135
  • [25] On strongly regular graphs with eigenvalue μ and their extensions
    A. A. Makhnev
    D. V. Paduchikh
    Proceedings of the Steklov Institute of Mathematics, 2014, 285 : 128 - 135
  • [26] On graphs in which all neighborhoods of vertices are locally pseudocyclic graphs
    V. V. Kabanov
    A. A. Makhnev
    Doklady Mathematics, 2014, 89 : 76 - 79
  • [27] On graphs the neighbourhoods of whose vertices are strongly regular with k=2μ
    Makhnev, AA
    SBORNIK MATHEMATICS, 2000, 191 (7-8) : 1033 - 1048
  • [28] Distance-regular extensions of strongly regular graphs with eigenvalue 2
    Belousov, I. N.
    Makhnev, A. A.
    Nirova, M. S.
    DOKLADY MATHEMATICS, 2012, 86 (03) : 816 - 819
  • [29] Distance-regular extensions of strongly regular graphs with eigenvalue 2
    I. N. Belousov
    A. A. Makhnev
    M. S. Nirova
    Doklady Mathematics, 2012, 86 : 816 - 819
  • [30] Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph
    Makhnev, A. A.
    Paduchikh, D. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2012, 18 (03): : 155 - 163