Existence of Kink Waves and Periodic Waves for a Perturbed Defocusing mKdV Equation

被引:0
|
作者
Aiyong Chen
Lina Guo
Wentao Huang
机构
[1] Guilin University of Electronic Technology,School of Mathematics and Computing Science
[2] Hunan First Normal University,Department of Mathematics
[3] Guilin University of Aerospace Technology,Department of Science
关键词
mKdV equation; Kink wave; Periodic wave; Picard–Fuchs equation; Abelian integral;
D O I
暂无
中图分类号
学科分类号
摘要
The existence of kink waves and periodic waves for a perturbed defocusing mKdV equation is established by using geometric singular perturbation theory. In addition, by analyzing the perturbation of the Hamiltonian vector field with an elliptic Hamiltonian of degree four, a two saddle cycle is exhibited. It is proven that the wave speed c0(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0(h)$$\end{document} is decreasing on h∈[-3/4,0]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in [-3/4,0]$$\end{document} by analyzing the ratio of Abelian integrals and the limit of wave speed is given. Furthermore, the relationship between the wave speed and the wavelength of traveling waves is obtained.
引用
收藏
页码:495 / 517
页数:22
相关论文
共 50 条