Existence of Kink Waves and Periodic Waves for a Perturbed Defocusing mKdV Equation

被引:0
|
作者
Aiyong Chen
Lina Guo
Wentao Huang
机构
[1] Guilin University of Electronic Technology,School of Mathematics and Computing Science
[2] Hunan First Normal University,Department of Mathematics
[3] Guilin University of Aerospace Technology,Department of Science
关键词
mKdV equation; Kink wave; Periodic wave; Picard–Fuchs equation; Abelian integral;
D O I
暂无
中图分类号
学科分类号
摘要
The existence of kink waves and periodic waves for a perturbed defocusing mKdV equation is established by using geometric singular perturbation theory. In addition, by analyzing the perturbation of the Hamiltonian vector field with an elliptic Hamiltonian of degree four, a two saddle cycle is exhibited. It is proven that the wave speed c0(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0(h)$$\end{document} is decreasing on h∈[-3/4,0]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in [-3/4,0]$$\end{document} by analyzing the ratio of Abelian integrals and the limit of wave speed is given. Furthermore, the relationship between the wave speed and the wavelength of traveling waves is obtained.
引用
收藏
页码:495 / 517
页数:22
相关论文
共 50 条
  • [21] Rogue waves on the periodic background in the high-order discrete mKdV equation
    Zhen, Yanpei
    Chen, Jinbing
    NONLINEAR DYNAMICS, 2023, 111 (13) : 12511 - 12524
  • [22] Rogue waves on the periodic background in the high-order discrete mKdV equation
    Yanpei Zhen
    Jinbing Chen
    Nonlinear Dynamics, 2023, 111 : 12511 - 12524
  • [23] Quasi-Periodic, Periodic Waves, and Soliton Solutions for the Combined KdV-mKdV Equation
    Abdel-Salam, Emad A. -B.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (9-10): : 639 - 645
  • [24] Stability of periodic waves for the defocusing fractional cubic nonlinear Schrõdinger equation
    Borluk, Handan
    Muslu, Gulcin M.
    Natali, Fabio
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 133
  • [25] Existence of periodic and solitary waves of a Boussinesq equation under perturbations
    Wei, Minzhi
    Fan, Feiting
    Chen, Xingwu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81
  • [26] SMOOTH QUASI-PERIODIC SOLUTIONS FOR THE PERTURBED MKDV EQUATION
    Xu, Siqi
    Yan, Dongfeng
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) : 1857 - 1869
  • [27] Orbital stability in the cubic defocusing NLS equation: I. Cnoidal periodic waves
    Gallay, Thierry
    Pelinovsky, Dmitry
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (10) : 3607 - 3638
  • [28] Propagation of Waves in Perturbed Periodic Waveguides
    Godin, Yuri
    2016 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2016, : 382 - 385
  • [29] EXISTENCE OF PERTURBED SOLITARY WAVE SOLUTIONS TO A MODEL EQUATION FOR WATER-WAVES
    HUNTER, JK
    SCHEURLE, J
    PHYSICA D, 1988, 32 (02): : 253 - 268
  • [30] Interaction among a lump, periodic waves, and kink solutions to the KP-BBM equation
    Li, Junjie
    Manafian, Jalil
    Nguyen Thi Hang
    Dinh Tran Ngoc Huy
    Davidyants, Alla
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (01) : 227 - 243