Weighted local progressive-iterative approximation property for triangular Bézier surfaces

被引:0
|
作者
Qianqian Hu
Jiadong Wang
Ruyi Liang
机构
[1] Zhejiang Gongshang University,School of Statistics and Mathematics
来源
The Visual Computer | 2022年 / 38卷
关键词
Progressive-iterative approximation; Local format; Weight; Triangular Bézier surface; Bernstein basis function; Convergence rate;
D O I
暂无
中图分类号
学科分类号
摘要
Progressive-iterative approximation (abbr. PIA) is an important and intuitive method for fitting and interpolating scattered data points. The triangular Bernstein basis with uniformly distributed parameters has the PIA property. For the sake of more flexibility, this paper presents a local progressive-iterative approximation (abbr. LPIA) format, which allows only a chosen subset of the initial control points to adjust and shows that the LPIA format is convergent for triangular Bézier surface of degree n≤17\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \le 17$$\end{document} with uniform parameters. Furthermore, in order to accelerate the convergence rate, we develop a weighted LPIA format for triangular Bézier surfaces and prove that the weighted LPIA format has a faster convergence rate than the LPIA format when an optimal value of the weight is chosen. Finally, some numerical examples are presented to show the effectiveness of the LPIA method and the fast convergence of the weighted LPIA method.
引用
收藏
页码:3819 / 3830
页数:11
相关论文
共 50 条
  • [21] Interval Bézier Surfaces Approximation of Rational Surfaces
    黄林
    Journal of Southwest Jiaotong University(English Edition), 2010, (01) : 91 - 98
  • [22] Progressive iterative approximation for triangular Bezier surfaces (vol 43, pg 889, 2011)
    Chen, Jie
    Wang, Guo-Jin
    COMPUTER-AIDED DESIGN, 2011, 43 (12) : 1916 - 1916
  • [23] Fairing-PIA: progressive-iterative approximation for fairing curve and surface generation
    Jiang, Yini
    Lin, Hongwei
    Huang, Weixian
    VISUAL COMPUTER, 2024, 40 (03): : 1467 - 1484
  • [25] CONVEXITY THEOREM OF PARAMETRIC TRIANGULAR BZIER SURFACES
    赵建民
    ChineseAnnalsofMathematics, 1988, (01) : 134 - 145
  • [26] Progressive Iterative Approximation for Extended B-Spline Interpolation Surfaces
    Yi, Yeqing
    Tang, Zixuan
    Liu, Chengzhi
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [27] A Single-Image Super-Resolution Method Based on Progressive-Iterative Approximation
    Zhang, Yunfeng
    Wang, Ping
    Bao, Fangxun
    Yao, Xunxiang
    Zhang, Caiming
    Lin, Hongwei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (06) : 1407 - 1422
  • [28] Full-LSPIA: A Least-Squares Progressive-Iterative Approximation Method with Optimization of Weights and Knots for NURBS Curves and Surfaces
    Lan, Lin
    Ji, Ye
    Wang, Meng-Yun
    Zhu, Chun-Gang
    COMPUTER-AIDED DESIGN, 2024, 169
  • [29] Implicit Progressive-Iterative Algorithm of Curves and Surfaces with Compactly Supported Radial Basis Functions
    Wang H.
    Liu T.
    Liu S.
    Wei W.
    Liu X.
    Liu P.
    Bai Y.
    Chen Y.
    Liu, Shengjun (shjliu.cg@csu.edu.cn); Liu, Shengjun (shjliu.cg@csu.edu.cn), 1755, Institute of Computing Technology (33): : 1755 - 1764
  • [30] Generalized and optimal sequence of weights on a progressive-iterative approximation method with memory for least square fitting
    Channark, Saknarin
    Kumam, Poom
    Martinez-Moreno, Juan
    Chaipunya, Parin
    Jirakitpuwapat, Wachirapong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (17) : 11013 - 11030