Progressive iterative approximation for triangular Bezier surfaces (vol 43, pg 889, 2011)

被引:0
|
作者
Chen, Jie [1 ]
Wang, Guo-Jin
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
关键词
D O I
10.1016/j.cad.2011.10.006
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:1916 / 1916
页数:1
相关论文
共 50 条
  • [1] Progressive iterative approximation for triangular Bezier surfaces
    Chen, Jie
    Wang, Guo-Jin
    COMPUTER-AIDED DESIGN, 2011, 43 (08) : 889 - 895
  • [2] Local Progressive Iterative Approximation for Triangular Bezier and Rational Triangular Bezier Surfaces
    Yan, Liping
    Yu, Desheng
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHATRONICS AND INDUSTRIAL INFORMATICS, 2015, 31 : 456 - 463
  • [3] Weighted local progressive-iterative approximation property for triangular Bezier surfaces
    Hu, Qianqian
    Wang, Jiadong
    Liang, Ruyi
    VISUAL COMPUTER, 2022, 38 (11): : 3819 - 3830
  • [4] An iterative algorithm for polynomial approximation of rational triangular Bezier surfaces
    Hu, Qianqian
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9308 - 9316
  • [5] Preconditioned progressive iterative approximation for triangular Bezier patches and its application
    Liu, Chengzhi
    Han, Xuli
    Li, Juncheng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 366 (366)
  • [6] Constrained approximation of rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Lewanowicz, Stanislaw
    Keller, Pawel
    Wozny, Pawel
    NUMERICAL ALGORITHMS, 2017, 75 (01) : 93 - 111
  • [7] Weighted local progressive-iterative approximation property for triangular Bézier surfaces
    Qianqian Hu
    Jiadong Wang
    Ruyi Liang
    The Visual Computer, 2022, 38 : 3819 - 3830
  • [8] Preconditioned progressive iterative approximation for tensor product Bezier patches
    Liu, Chengzhi
    Liu, Zhongyun
    Han, Xuli
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 185 : 372 - 383
  • [9] Improved Least Square Progressive Iterative Approximation Format for Triangular B-B Surfaces
    Hu Q.
    Wang J.
    Wang G.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (05): : 777 - 783
  • [10] The Least Square Progressive Iterative Approximation Property of Low Degree Non-Uniform Triangular Bézier Surfaces
    Hu Q.
    Zhang Y.
    Wang G.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (03): : 360 - 366