Weighted local progressive-iterative approximation property for triangular Bézier surfaces

被引:0
|
作者
Qianqian Hu
Jiadong Wang
Ruyi Liang
机构
[1] Zhejiang Gongshang University,School of Statistics and Mathematics
来源
The Visual Computer | 2022年 / 38卷
关键词
Progressive-iterative approximation; Local format; Weight; Triangular Bézier surface; Bernstein basis function; Convergence rate;
D O I
暂无
中图分类号
学科分类号
摘要
Progressive-iterative approximation (abbr. PIA) is an important and intuitive method for fitting and interpolating scattered data points. The triangular Bernstein basis with uniformly distributed parameters has the PIA property. For the sake of more flexibility, this paper presents a local progressive-iterative approximation (abbr. LPIA) format, which allows only a chosen subset of the initial control points to adjust and shows that the LPIA format is convergent for triangular Bézier surface of degree n≤17\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \le 17$$\end{document} with uniform parameters. Furthermore, in order to accelerate the convergence rate, we develop a weighted LPIA format for triangular Bézier surfaces and prove that the weighted LPIA format has a faster convergence rate than the LPIA format when an optimal value of the weight is chosen. Finally, some numerical examples are presented to show the effectiveness of the LPIA method and the fast convergence of the weighted LPIA method.
引用
收藏
页码:3819 / 3830
页数:11
相关论文
共 50 条
  • [1] Weighted local progressive-iterative approximation property for triangular Bezier surfaces
    Hu, Qianqian
    Wang, Jiadong
    Liang, Ruyi
    VISUAL COMPUTER, 2022, 38 (11): : 3819 - 3830
  • [2] Weighted local progressive iterative approximation for tensor-product Bézier surfaces
    Zhang, Li
    Zuo, Jiangyong
    Tan, Jieqing
    Journal of Information and Computational Science, 2014, 11 (07): : 2117 - 2124
  • [3] The Least Square Progressive Iterative Approximation Property of Low Degree Non-Uniform Triangular Bézier Surfaces
    Hu Q.
    Zhang Y.
    Wang G.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (03): : 360 - 366
  • [4] Constrained approximation of rational triangular Bézier surfaces by polynomial triangular Bézier surfaces
    Stanisław Lewanowicz
    Paweł Keller
    Paweł Woźny
    Numerical Algorithms, 2017, 75 : 93 - 111
  • [5] Local Progressive Iterative Approximation for Triangular Bezier and Rational Triangular Bezier Surfaces
    Yan, Liping
    Yu, Desheng
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHATRONICS AND INDUSTRIAL INFORMATICS, 2015, 31 : 456 - 463
  • [6] Local progressive-iterative approximation format for blending curves and patches
    Lin, Hongwei
    COMPUTER AIDED GEOMETRIC DESIGN, 2010, 27 (04) : 322 - 339
  • [7] Progressive iterative approximation for triangular Bezier surfaces
    Chen, Jie
    Wang, Guo-Jin
    COMPUTER-AIDED DESIGN, 2011, 43 (08) : 889 - 895
  • [8] Accelerated local progressive-iterative approximation methods for curve and surface fitting
    Yao, Zhenmin
    Hu, Qianqian
    VISUAL COMPUTER, 2025,
  • [9] Adaptive data fitting by the progressive-iterative approximation
    Lin, Hongwei
    COMPUTER AIDED GEOMETRIC DESIGN, 2012, 29 (07) : 463 - 473
  • [10] Improved Least Square Progressive Iterative Approximation Format for Triangular B-B Surfaces
    Hu Q.
    Wang J.
    Wang G.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (05): : 777 - 783