A note on adjacent strong edge coloring of K(n,m)

被引:0
|
作者
Li J.-W. [1 ]
Zhang Z.-F. [2 ,3 ]
Chen X.-E. [3 ]
Sun Y.-R. [3 ]
机构
[1] College of Information and Electrical Engineering, Lanzhou Jiaotong University
[2] Institute of Applied Mathematics, Lanzhou Jiaotong University
[3] College of Mathematics and Information Science, Northwest Normal University
基金
中国国家自然科学基金;
关键词
Adjacent strong edge coloring; Coloring; Edge coloring;
D O I
10.1007/s10255-006-0303-x
中图分类号
学科分类号
摘要
In this paper, we prove that the adjacent strong edge chromatic number of a graph K(n,m) is n + 1, with n ≥ 2,m ≥ 1. © Springer-Verlag 2006.
引用
收藏
页码:273 / 276
页数:3
相关论文
共 50 条
  • [41] Strong edge-coloring of planar graphs
    Hudak, David
    Luzar, Borut
    Sotak, Roman
    Skrekovski, Riste
    DISCRETE MATHEMATICS, 2014, 324 : 41 - 49
  • [42] Note on injective edge-coloring of graphs
    Miao, Zhengke
    Song, Yimin
    Yu, Gexin
    DISCRETE APPLIED MATHEMATICS, 2022, 310 : 65 - 74
  • [43] A Note on the Facial Edge-Coloring Conjecture
    Jendrol', Stanislav
    Onderko, Alfred
    GRAPHS AND COMBINATORICS, 2025, 41 (02)
  • [44] The Smarandachely Strong adjacent vertex total coloring of join graph
    School of Mathematics and Computer Sciences, Ningxia University, Yinchuan, 750021, China
    不详
    Int. Conf. Bioinformatics Biomed. Eng., iCBBE,
  • [45] The algorithm for adjacent vertex distinguishing proper edge coloring of graphs
    Li, Jingwen
    Hu, Tengyun
    Wen, Fei
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
  • [46] The Smarandachely Strong Adjacent Vertex Total Coloring of Join Graph
    Wang, Zhiwen
    Zhang, Zhongfu
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [47] Acyclic Edge Coloring of Planar Graphs without Adjacent Triangles
    Dezheng XIE 1
    2.School of Mathematics and Computer Science
    Journal of Mathematical Research with Applications, 2012, (04) : 407 - 414
  • [48] Acyclic edge coloring of planar graphs without adjacent cycles
    WAN Min
    XU BaoGang
    ScienceChina(Mathematics), 2014, 57 (02) : 433 - 442
  • [49] Upper bounds for adjacent vertex-distinguishing edge coloring
    Zhu, Junlei
    Bu, Yuehua
    Dai, Yun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (02) : 454 - 462
  • [50] On the Adjacent Vertex-distinguishing Equitable Edge Coloring of Graphs
    Jing-wen LI
    Cong WANG
    Zhi-wen WANG
    Acta Mathematicae Applicatae Sinica, 2013, (03) : 615 - 622