A note on adjacent strong edge coloring of K(n,m)

被引:0
|
作者
Li J.-W. [1 ]
Zhang Z.-F. [2 ,3 ]
Chen X.-E. [3 ]
Sun Y.-R. [3 ]
机构
[1] College of Information and Electrical Engineering, Lanzhou Jiaotong University
[2] Institute of Applied Mathematics, Lanzhou Jiaotong University
[3] College of Mathematics and Information Science, Northwest Normal University
基金
中国国家自然科学基金;
关键词
Adjacent strong edge coloring; Coloring; Edge coloring;
D O I
10.1007/s10255-006-0303-x
中图分类号
学科分类号
摘要
In this paper, we prove that the adjacent strong edge chromatic number of a graph K(n,m) is n + 1, with n ≥ 2,m ≥ 1. © Springer-Verlag 2006.
引用
收藏
页码:273 / 276
页数:3
相关论文
共 50 条
  • [21] A note on list edge and list total coloring of planar graphs without adjacent short cycles
    Hui Juan Wang
    Jian Liang Wu
    Acta Mathematica Sinica, English Series, 2014, 30 : 91 - 96
  • [22] A Note on List Edge and List Total Coloring of Planar Graphs without Adjacent Short Cycles
    Hui Juan WANG
    Jian Liang WU
    Acta Mathematica Sinica,English Series, 2014, (01) : 91 - 96
  • [23] A Note on List Edge and List Total Coloring of Planar Graphs without Adjacent Short Cycles
    Wang, Hui Juan
    Wu, Jian Liang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (01) : 91 - 96
  • [24] A Note on List Edge and List Total Coloring of Planar Graphs without Adjacent Short Cycles
    Hui Juan WANG
    Jian Liang WU
    ActaMathematicaSinica, 2014, 30 (01) : 91 - 96
  • [25] Adjacent Vertex Reducible Edge Coloring for graphs
    Ding, Zhe
    Li, Jingwen
    Luo, Rong
    Zhang, Lijing
    IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2022, 2022-June : 1049 - 1053
  • [26] An algorithm on strong edge coloring of K4-minor free graphs
    Van Bommel, M.F.
    Wang, Ping
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2021, 116 : 303 - 314
  • [27] A polynomial time algorithm for strong edge coloring of partial k-trees
    Salavatipour, MR
    DISCRETE APPLIED MATHEMATICS, 2004, 143 (1-3) : 285 - 291
  • [28] Strong edge coloring of circle graphs
    Debski, Michal
    Sleszynska-Nowak, Malgorzata
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 102
  • [29] On the computational complexity of strong edge coloring
    Mabdian, M
    DISCRETE APPLIED MATHEMATICS, 2002, 118 (03) : 239 - 248
  • [30] Strong Edge Coloring of K4 (t)-Minor Free Graphs
    Yin, Huixin
    Han, Miaomiao
    Xu, Murong
    AXIOMS, 2023, 12 (06)