Symmetries of the WDVV Equations

被引:0
|
作者
M. L. Geurts
R. Martini
G. F. Post
机构
[1] IBM Netherlands,
[2] Faculty of Applied Mathematics University Twente,undefined
来源
关键词
WDVV equations; Lie symmetries; Chazy equation;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the symmetry structure of the WDVV equations. We obtain an r-parameter group of symmetries, where r=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{1}{2}$$ \end{document}(n2+7n+4)+⌊n/2⌋. Moreover, it is proved that for n=3 and n=4 these comprise all symmetries. We determine a subgroup, which defines an SL2-action on the space of solutions. For the special case n=3 this action is compared to the SL2-symmetry of the Chazy equation. We construct similar solutions in the cases n=4 and n=5.
引用
收藏
页码:67 / 75
页数:8
相关论文
共 50 条
  • [1] Symmetries of the WDVV equations
    Geurts, ML
    Martini, R
    Post, GF
    ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (1-2) : 67 - 75
  • [2] Symmetries of WDVV equations
    Chen, YJ
    Kontsevich, M
    Schwarz, A
    NUCLEAR PHYSICS B, 2005, 730 (03) : 352 - 363
  • [3] Generalized Legendre transformations and symmetries of the WDVV equations
    Strachan, Ian A. B.
    Stedman, Richard
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (09)
  • [4] WDVV equations
    Magri, F.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2015, 38 (05):
  • [5] Covariance of WDVV equations
    Mironov, A
    Morozov, A
    PHYSICS LETTERS B, 1998, 424 (1-2) : 48 - 52
  • [6] The WDVV symmetries in two-primary models
    Yu-Tung Chen
    Niann-Chern Lee
    Ming-Hsien Tu
    Theoretical and Mathematical Physics, 2009, 161 : 1634 - 1646
  • [7] The WDVV symmetries in two-primary models
    Chen, Yu-Tung
    Lee, Niann-Chern
    Tu, Ming-Hsien
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 161 (03) : 1634 - 1646
  • [8] WDVV equations as functional relations
    Braden, HW
    Marshakov, A
    PHYSICS LETTERS B, 2002, 541 (3-4) : 376 - 383
  • [9] On the logarithmic solutions of the WDVV equations
    Feigin, M. V.
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) : 1149 - 1153
  • [10] The curved WDVV equations and superfields
    Kozyrev, N.
    32ND INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (GROUP32), 2019, 1194