Symmetries of the WDVV Equations

被引:0
|
作者
M. L. Geurts
R. Martini
G. F. Post
机构
[1] IBM Netherlands,
[2] Faculty of Applied Mathematics University Twente,undefined
来源
关键词
WDVV equations; Lie symmetries; Chazy equation;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the symmetry structure of the WDVV equations. We obtain an r-parameter group of symmetries, where r=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{1}{2}$$ \end{document}(n2+7n+4)+⌊n/2⌋. Moreover, it is proved that for n=3 and n=4 these comprise all symmetries. We determine a subgroup, which defines an SL2-action on the space of solutions. For the special case n=3 this action is compared to the SL2-symmetry of the Chazy equation. We construct similar solutions in the cases n=4 and n=5.
引用
收藏
页码:67 / 75
页数:8
相关论文
共 50 条
  • [31] The inversion symmetry of the WDVV equations and tau functions
    Liu, Si-Qi
    Xu, Dingdian
    Zhang, Youjin
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (23-24) : 2168 - 2177
  • [32] WDVV equations and Seiberg-Witten theory
    Mironov, A
    INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 103 - 123
  • [33] WDVV equations: symbolic computations of Hamiltonian operators
    Vasicek, Jakub
    Vitolo, Raffaele
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2022, 33 (06) : 915 - 934
  • [34] Polynomial solutions to the WDVV equations in four dimensions
    Marini, R
    Post, GF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (08): : L229 - L232
  • [35] WDVV equations and invariant bi-Hamiltonian formalism
    Vasicek, J.
    Vitolo, R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
  • [36] Second-order integrable Lagrangians and WDVV equations
    E. V. Ferapontov
    M. V. Pavlov
    Lingling Xue
    Letters in Mathematical Physics, 2021, 111
  • [37] The WDVV equations in pure Seiberg-Witten theory
    Hoevenaars, LK
    ACTA APPLICANDAE MATHEMATICAE, 2005, 86 (1-2) : 49 - 102
  • [38] Formulas for An- and Bn-solutions of WDVV equations
    Natanzon, SM
    JOURNAL OF GEOMETRY AND PHYSICS, 2001, 39 (04) : 323 - 336
  • [39] The WDVV Associativity Equations as a High-Frequency Limit
    Pavlov, Maxim, V
    Stoilov, Nikola M.
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (05) : 1843 - 1864
  • [40] Trigonometric Solutions of the WDVV Equations from Root Systems
    R. Martini
    L. K. Hoevenaars
    Letters in Mathematical Physics, 2003, 65 : 15 - 18