Symmetries of WDVV equations

被引:9
|
作者
Chen, YJ
Kontsevich, M
Schwarz, A
机构
[1] Perimeter Inst, Waterloo, ON N2L 2Y5, Canada
[2] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[3] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.nuclphysb.2005.09.025
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We say that a function F(tau) obeys WDVV equations, if for a given invertible symmetric matrix eta(alpha beta) and all tau is an element of T subset of R '', the expressions c(beta)(gamma)(alpha)(tau) = eta(alpha lambda)c(lambda beta gamma)(tau) = eta(alpha lambda)partial derivative(lambda)partial derivative(beta)partial derivative(gamma) F can be considered as structure constants of commutative associative algebra; the matrix eta(alpha beta) inverse to eta(alpha beta) determines an invariant scalar product on this algebra. A function x(alpha)(z, tau) obeying partial derivative(alpha)partial derivative(beta)x(gamma)(z, tau) = z(-1) c(alpha)(beta)(epsilon)partial derivative(epsilon)x(gamma)(z, tau) is called a calibration of a solution of WDVV equations. We show that there exists an infinite-dimensional group acting on the space of calibrated solutions of WDVV equations (in different form such a group was constructed in [A. Givental, math.AG/0305409]). We describe the action of Lie algebra of this group. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:352 / 363
页数:12
相关论文
共 50 条
  • [1] Symmetries of the WDVV Equations
    M. L. Geurts
    R. Martini
    G. F. Post
    Acta Applicandae Mathematica, 2002, 72 : 67 - 75
  • [2] Symmetries of the WDVV equations
    Geurts, ML
    Martini, R
    Post, GF
    ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (1-2) : 67 - 75
  • [3] Generalized Legendre transformations and symmetries of the WDVV equations
    Strachan, Ian A. B.
    Stedman, Richard
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (09)
  • [4] WDVV equations
    Magri, F.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2015, 38 (05):
  • [5] Covariance of WDVV equations
    Mironov, A
    Morozov, A
    PHYSICS LETTERS B, 1998, 424 (1-2) : 48 - 52
  • [6] The WDVV symmetries in two-primary models
    Yu-Tung Chen
    Niann-Chern Lee
    Ming-Hsien Tu
    Theoretical and Mathematical Physics, 2009, 161 : 1634 - 1646
  • [7] The WDVV symmetries in two-primary models
    Chen, Yu-Tung
    Lee, Niann-Chern
    Tu, Ming-Hsien
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 161 (03) : 1634 - 1646
  • [8] WDVV equations as functional relations
    Braden, HW
    Marshakov, A
    PHYSICS LETTERS B, 2002, 541 (3-4) : 376 - 383
  • [9] On the logarithmic solutions of the WDVV equations
    Feigin, M. V.
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) : 1149 - 1153
  • [10] The curved WDVV equations and superfields
    Kozyrev, N.
    32ND INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (GROUP32), 2019, 1194