Almost Complex Surfaces in the Nearly Kähler Flag Manifold

被引:0
|
作者
Kamil Cwiklinski
Luc Vrancken
机构
[1] Université de Mons,Service de Physique de l’Univers, Champs et Gravitation
[2] Université Polytechnique Hauts-de-France,LMI
[3] Campus du Mont Houy,Laboratoire de Mathématiques pour l’Ingénieur
[4] Katholieke Universiteit Leuven,undefined
[5] Departement Wiskunde,undefined
来源
Results in Mathematics | 2022年 / 77卷
关键词
Nonlocal PDE; impulsive effect; fixed point theory; MNC estimate; 53B25; 53C40; 53B35;
D O I
暂无
中图分类号
学科分类号
摘要
We study and classify almost complex totally geodesic submanifolds of the nearly Kähler flag manifold F1,2(C3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{1,2}(\mathbb C^3)$$\end{document}, and of its semi-Riemannian counterpart. We also develop a structural approach to the nearly Kähler flag manifold F1,2(C3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{1,2}(\mathbb C^3)$$\end{document}, expressing for example the curvature tensor in terms of the nearly Kähler structure J and the three canonical orthogonal complex structures.
引用
收藏
相关论文
共 50 条
  • [31] Affine Surfaces Which are Kähler, Para-Kähler, or Nilpotent Kähler
    E. Calviño-Louzao
    E. García-Río
    P. Gilkey
    I. Gutiérrez-Rodríguez
    R. Vázquez-Lorenzo
    Results in Mathematics, 2018, 73
  • [32] Deformation of Kähler metrics and an eigenvalue problem for the Laplacian on a compact Kähler manifold
    Narita, Kazumasa
    MANUSCRIPTA MATHEMATICA, 2024, 175 (3-4) : 841 - 864
  • [33] Invariant nearly-Kähler structures
    Luiz A. B. San Martin
    Rita de Cássia de J. Silva
    Geometriae Dedicata, 2006, 121 : 143 - 154
  • [34] A closed symplectic four-manifold has almost Kähler metrics of negative scalar curvature
    Jongsu Kim
    Annals of Global Analysis and Geometry, 2008, 33 : 115 - 136
  • [35] Locally homogeneous nearly Kähler manifolds
    V. Cortés
    J. J. Vásquez
    Annals of Global Analysis and Geometry, 2015, 48 : 269 - 294
  • [36] Heterotic compactifications on nearly Kähler manifolds
    Olaf Lechtenfeld
    Christoph Nölle
    Alexander D. Popov
    Journal of High Energy Physics, 2010
  • [37] Pseudoholomorphic Curves on Nearly Kähler Manifolds
    Misha Verbitsky
    Communications in Mathematical Physics, 2013, 324 : 173 - 177
  • [38] Nearly Kähler Submanifolds of a Space Form
    Nikrooz Heidari
    Abbas Heydari
    Mediterranean Journal of Mathematics, 2016, 13 : 2525 - 2537
  • [39] Pseudo-Kähler Quantization on Flag Manifolds
    Alexander V. Karabegov
    Communications in Mathematical Physics, 1999, 200 : 355 - 379
  • [40] On the finiteness of meromorphic mappings from a complete Kähler manifold into complex projective spaces
    Pham, Duc Thoan
    Hoang, Thu Thuy
    Vu, Thi Thuy
    JOURNAL OF ANALYSIS, 2024, 32 (03): : 1847 - 1876