Nonlocality and efficiency of three-qubit partially entangled states

被引:0
|
作者
Jyoti Faujdar
Hargeet Kaur
Parvinder Singh
Atul Kumar
Satyabrata Adhikari
机构
[1] Indian Institute of Technology Jodhpur,School of Technology
[2] Pandit Deendayal Energy University,undefined
[3] Central University of Punjab,undefined
[4] Delhi Technological University,undefined
关键词
Quantum correlations; Nonlocality; Partially entangled states;
D O I
暂无
中图分类号
学科分类号
摘要
We analyse nonlocal properties in three-qubit partially entangled Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{n}$$\end{document} states to understand the efficiency of these states as entangled resources. Our results show that Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{n}$$\end{document} states always violate the three-qubit Svetlichny inequality, and the degree of violation increases with the increase in degree of entanglement. We find that nonlocal correlations in W1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{1}$$\end{document} states are the highest in comparison to all other Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{n}$$\end{document} states. We further demonstrate that within the limits of experimentally achievable measurements the W1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{1}$$\end{document} state proves to be a better quantum resource for specific protocols in comparison to standard W states, even though the degree of entanglement and nonlocality in the W1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{1}$$\end{document} state are less than the degree of entanglement and nonlocality in the standard W state. Moreover, we also consider superpositions of the Greenberger–Horne–Zeilinger (GHZ) state with W and W1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{1}$$\end{document} states to show that more entanglement is not a necessity for better efficiency in all protocols. In addition, we also demonstrate the preparation of three qubit quantum states represented as linear superpositions of the GHZ state with W and W1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{1}$$\end{document} states.
引用
收藏
页码:27 / 40
页数:13
相关论文
共 50 条
  • [41] Complementary relations of entanglement, coherence, steering, and Bell nonlocality inequality violation in three-qubit states
    Dong, Dong-Dong
    Song, Xue-Ke
    Fan, Xiao-Gang
    Ye, Liu
    Wang, Dong
    PHYSICAL REVIEW A, 2023, 107 (05)
  • [42] Bell-type inequality and tripartite nonlocality in three-qubit GHZ-class states
    Zhao Jia-Qiang
    Cao Lian-Zhen
    Lu Huai-Xin
    Wang Xiao-Qin
    ACTA PHYSICA SINICA, 2013, 62 (12)
  • [43] Quantum tomography of an entangled three-qubit state in silicon
    Takeda, Kenta
    Noiri, Akito
    Nakajima, Takashi
    Yoneda, Jun
    Kobayashi, Takashi
    Tarucha, Seigo
    NATURE NANOTECHNOLOGY, 2021, 16 (09) : 965 - +
  • [44] A Secure Quantum Proxy Group Signature Scheme Based on Three-qubit Entangled States
    Lan, Lu
    Lu, Rongbo
    Zhong, Juxiu
    Shi, Yuanquan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (02)
  • [45] Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states
    You-Bang Zhan
    Peng Cheng Ma
    Quantum Information Processing, 2013, 12 : 997 - 1009
  • [46] A Secure Quantum Proxy Group Signature Scheme Based on Three-qubit Entangled States
    Lu Lan
    Rongbo Lu
    Juxiu Zhong
    Yuanquan Shi
    International Journal of Theoretical Physics, 63
  • [47] Semi-quantum key agreement based on maximally three-qubit entangled states
    Guo, H.
    Li, Y. X.
    Wei, J. H.
    Tang, J.
    2021 THE 7TH INTERNATIONAL CONFERENCE ON COMMUNICATION AND INFORMATION PROCESSING, ICCIP 2021, 2021, : 132 - 136
  • [48] Impact of the Hawking Effect on the Fully Entangled Fraction of Three-Qubit States in Schwarzschild Spacetime
    Mi, Guang-Wei
    Huang, Xiaofen
    Fei, Shao-Ming
    Zhang, Tinggui
    ANNALEN DER PHYSIK, 2025, 537 (02)
  • [49] Einstein-Podolsky-Rosen steering and coherence in the family of entangled three-qubit states
    Kalaga, J. K.
    Leonski, W.
    Perina, J., Jr.
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [50] Quantum Information Splitting of a Three-Qubit GHZ State via Maximally Entangled States
    Wang, Zhiqiang
    Huang, Caojun
    Tan, Feng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (07) : 2453 - 2455