Nonlocality and efficiency of three-qubit partially entangled states

被引:0
|
作者
Jyoti Faujdar
Hargeet Kaur
Parvinder Singh
Atul Kumar
Satyabrata Adhikari
机构
[1] Indian Institute of Technology Jodhpur,School of Technology
[2] Pandit Deendayal Energy University,undefined
[3] Central University of Punjab,undefined
[4] Delhi Technological University,undefined
关键词
Quantum correlations; Nonlocality; Partially entangled states;
D O I
暂无
中图分类号
学科分类号
摘要
We analyse nonlocal properties in three-qubit partially entangled Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{n}$$\end{document} states to understand the efficiency of these states as entangled resources. Our results show that Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{n}$$\end{document} states always violate the three-qubit Svetlichny inequality, and the degree of violation increases with the increase in degree of entanglement. We find that nonlocal correlations in W1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{1}$$\end{document} states are the highest in comparison to all other Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{n}$$\end{document} states. We further demonstrate that within the limits of experimentally achievable measurements the W1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{1}$$\end{document} state proves to be a better quantum resource for specific protocols in comparison to standard W states, even though the degree of entanglement and nonlocality in the W1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{1}$$\end{document} state are less than the degree of entanglement and nonlocality in the standard W state. Moreover, we also consider superpositions of the Greenberger–Horne–Zeilinger (GHZ) state with W and W1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{1}$$\end{document} states to show that more entanglement is not a necessity for better efficiency in all protocols. In addition, we also demonstrate the preparation of three qubit quantum states represented as linear superpositions of the GHZ state with W and W1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{1}$$\end{document} states.
引用
收藏
页码:27 / 40
页数:13
相关论文
共 50 条
  • [31] Deterministic joint remote preparation of arbitrary multi-qubit states via three-qubit entangled states
    Wei, Jiahua
    Shi, Lei
    Zhao, Shanghong
    Zhou, Kaihang
    Yu, Longqiang
    Lu, Wei
    Ma, Lihua
    Zhao, Boxin
    QUANTUM INFORMATION PROCESSING, 2019, 18 (08)
  • [32] Deterministic joint remote preparation of arbitrary multi-qubit states via three-qubit entangled states
    Jiahua Wei
    Lei Shi
    Shanghong Zhao
    Kaihang Zhou
    Longqiang Yu
    Wei Lu
    Lihua Ma
    Boxin Zhao
    Quantum Information Processing, 2019, 18
  • [33] One sided sequential sharing of tripartite nonlocality for pure and mixed three-qubit states
    Hossain, Sk Sahadat
    INDIAN JOURNAL OF PHYSICS, 2025, 99 (02) : 581 - 590
  • [34] Controlled quantum key agreement based on maximally three-qubit entangled states
    Tang, Jie
    Shi, Lei
    Wei, Jiahua
    MODERN PHYSICS LETTERS B, 2020, 34 (18):
  • [35] Quantum nonlocality of four-qubit entangled states
    Wu, Chunfeng
    Yeo, Ye
    Kwek, L. C.
    Oh, C. H.
    PHYSICAL REVIEW A, 2007, 75 (03):
  • [36] Controlled Teleportation of an Arbitrary Three-Qubit State by Using Two Four-Qubit Entangled States
    Sang, Ming-huang
    Dai, Hai-lang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (06) : 1930 - 1934
  • [37] Controlled Teleportation of an Arbitrary Three-Qubit State by Using Two Four-Qubit Entangled States
    Ming-huang Sang
    Hai-lang Dai
    International Journal of Theoretical Physics, 2014, 53 : 1930 - 1934
  • [38] Three-qubit topological phase on entangled photon pairs
    Johansson, Markus
    Khoury, Antonio Z.
    Singh, Kuldip
    Sjoqvist, Erik
    PHYSICAL REVIEW A, 2013, 87 (04):
  • [39] Quantum tomography of an entangled three-qubit state in silicon
    Kenta Takeda
    Akito Noiri
    Takashi Nakajima
    Jun Yoneda
    Takashi Kobayashi
    Seigo Tarucha
    Nature Nanotechnology, 2021, 16 : 965 - 969
  • [40] The dynamics of Bell nonlocality for three-qubit system in independent reservoirs
    Nie, Zun-Yan
    He, Zhi
    Chen, Yu
    LASER PHYSICS, 2021, 31 (08)