Commutators in the two-weight setting

被引:0
|
作者
Irina Holmes
Michael T. Lacey
Brett D. Wick
机构
[1] Georgia Institute of Technology,School of Mathematics
来源
Mathematische Annalen | 2017年 / 367卷
关键词
Primary 42; 42A; 42B; 42B20; 42B25; 42A50; 42A40;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be the vector of Riesz transforms on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb R ^{n}$$\end{document}, and let μ,λ∈Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ,\lambda \in A_p$$\end{document} be two weights on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb R ^{n}$$\end{document}, 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1< p < \infty $$\end{document}. The two-weight norm inequality for the commutator ||[b,R]:Lp(μ)→Lp(λ)||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ||[b, R] \;:\; L ^{p} (\mu ) \rightarrow L ^{p} (\lambda )||$$\end{document} is shown to be equivalent to the function b being in a BMO space adapted to μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda $$\end{document}. This is a common extension of a result of Coifman–Rochberg–Weiss in the case of both λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda $$\end{document} and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document} being Lebesgue measure, and Bloom in the case of dimension one.
引用
收藏
页码:51 / 80
页数:29
相关论文
共 50 条
  • [31] Two-weight dyadic Hardy inequalities
    Arcozzi, Nicola
    Chalmoukis, Nikolaos
    Levi, Matteo
    Mozolyako, Pavel
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2023, 34 (03) : 657 - 714
  • [32] Two-weight inequalities for Riesz potential and its commutators on weighted global Morrey-type spaces GMp,?,? ? (Rn)
    Avsar, Cahit
    Aykol, Canay
    Hasanov, Javanshir J.
    Musayev, Ali M.
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2023, 16 (01): : 33 - 50
  • [33] Parameterized Littlewood-Paley Operators and Their Commutators on Two-Weight Grand Homogeneous Variable Herz-Morrey Spaces
    Xijuan CHEN
    Wenwen TAO
    Guanghui LU
    Journal of Mathematical Research with Applications, 2025, 45 (02) : 231 - 242
  • [34] Complete weight enumerators of a class of two-weight linear codes
    Shudi Yang
    Qin Yue
    Yansheng Wu
    Xiangli Kong
    Cryptography and Communications, 2019, 11 : 609 - 620
  • [35] Two-Weight Codes and Second Order Recurrences
    Shi, Minjia
    Zhang, Zhongyi
    Sole, Patrick
    CHINESE JOURNAL OF ELECTRONICS, 2019, 28 (06) : 1127 - 1130
  • [36] ON THE MAXIMAL CARDINALITY OF BINARY TWO-WEIGHT CODES
    Landjev, Ivan
    Rousseva, Assia
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2021, 74 (10): : 1423 - 1430
  • [37] Non-Projective Two-Weight Codes
    Kurz, Sascha
    ENTROPY, 2024, 26 (04)
  • [38] TWO-WEIGHT NORM INEQUALITIES ON MORREY SPACES
    Tanaka, Hitoshi
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (02) : 773 - 791
  • [39] Projective two-weight cyclic or constacyclic codes
    Wolfmann, Jacques
    2006 IEEE International Symposium on Information Theory, Vols 1-6, Proceedings, 2006, : 901 - 902
  • [40] A family of projective two-weight linear codes
    Ziling Heng
    Dexiang Li
    Jiao Du
    Fuling Chen
    Designs, Codes and Cryptography, 2021, 89 : 1993 - 2007