Commutators in the two-weight setting

被引:0
|
作者
Irina Holmes
Michael T. Lacey
Brett D. Wick
机构
[1] Georgia Institute of Technology,School of Mathematics
来源
Mathematische Annalen | 2017年 / 367卷
关键词
Primary 42; 42A; 42B; 42B20; 42B25; 42A50; 42A40;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be the vector of Riesz transforms on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb R ^{n}$$\end{document}, and let μ,λ∈Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ,\lambda \in A_p$$\end{document} be two weights on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb R ^{n}$$\end{document}, 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1< p < \infty $$\end{document}. The two-weight norm inequality for the commutator ||[b,R]:Lp(μ)→Lp(λ)||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ||[b, R] \;:\; L ^{p} (\mu ) \rightarrow L ^{p} (\lambda )||$$\end{document} is shown to be equivalent to the function b being in a BMO space adapted to μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda $$\end{document}. This is a common extension of a result of Coifman–Rochberg–Weiss in the case of both λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda $$\end{document} and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document} being Lebesgue measure, and Bloom in the case of dimension one.
引用
收藏
页码:51 / 80
页数:29
相关论文
共 50 条
  • [21] Two-weight weak-type norm inequalities for the commutators of fractional integrals
    Liu, ZG
    Lu, SZ
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 48 (03) : 397 - 409
  • [22] The Holmes-Wick theorem on two-weight bounds for higher order commutators revisited
    Hytonen, T. P.
    ARCHIV DER MATHEMATIK, 2016, 107 (04) : 389 - 395
  • [23] On two-weight codes
    Boyvalenkov, P.
    Delchev, K.
    Zinoviev, D. V.
    Zinoviev, V. A.
    DISCRETE MATHEMATICS, 2021, 344 (05)
  • [24] On two-weight -codes
    Shi, Minjia
    Sepasdar, Zahra
    Alahmadi, Adel
    Sole, Patrick
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (06) : 1201 - 1209
  • [25] On a kind of two-weight code
    Liu, Zihui
    Zeng, Xiangyong
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (06) : 1265 - 1272
  • [26] Two-weight, weak-type norm inequalities for fractional integrals, Calderon-Zygmund operators and commutators
    Cruz-Uribe, D
    Pérez, C
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2000, 49 (02) : 697 - 721
  • [27] On two-weight (linear and nonlinear) codes
    Boyvalenkov, P.
    Delchev, K.
    Zinoviev, D., V
    Zinoviev, V. A.
    PROCEEDINGS OF THE 2020 SEVENTEENTH INTERNATIONAL WORKSHOP ON ALGEBRAIC AND COMBINATORIAL CODING THEORY ALGEBRAIC AND COMBINATORIAL CODING THEORY (ACCT 2020): PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL WORKSHOP ON ALGEBRAIC AND COMBINATORIAL CODING THEORY ACCT 2020, 2020, : 37 - 40
  • [28] Two New Families of Two-Weight Codes
    Shi, Minjia
    Guan, Yue
    Sole, Patrick
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) : 6240 - 6246
  • [29] Two classes of two-weight linear codes
    Heng, Ziling
    Yue, Qin
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 38 : 72 - 92
  • [30] Two-Weight Extrapolation on Lorentz Spaces
    Li, Wenming
    Zhang, Tingting
    Xue, Limei
    JOURNAL OF FUNCTION SPACES, 2015, 2015