Commutators in the two-weight setting

被引:0
|
作者
Irina Holmes
Michael T. Lacey
Brett D. Wick
机构
[1] Georgia Institute of Technology,School of Mathematics
来源
Mathematische Annalen | 2017年 / 367卷
关键词
Primary 42; 42A; 42B; 42B20; 42B25; 42A50; 42A40;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be the vector of Riesz transforms on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb R ^{n}$$\end{document}, and let μ,λ∈Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ,\lambda \in A_p$$\end{document} be two weights on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb R ^{n}$$\end{document}, 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1< p < \infty $$\end{document}. The two-weight norm inequality for the commutator ||[b,R]:Lp(μ)→Lp(λ)||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ||[b, R] \;:\; L ^{p} (\mu ) \rightarrow L ^{p} (\lambda )||$$\end{document} is shown to be equivalent to the function b being in a BMO space adapted to μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda $$\end{document}. This is a common extension of a result of Coifman–Rochberg–Weiss in the case of both λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda $$\end{document} and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document} being Lebesgue measure, and Bloom in the case of dimension one.
引用
收藏
页码:51 / 80
页数:29
相关论文
共 50 条
  • [1] Commutators in the two-weight setting
    Holmes, Irina
    Lacey, Michael T.
    Wick, Brett D.
    MATHEMATISCHE ANNALEN, 2017, 367 (1-2) : 51 - 80
  • [2] Multilinear commutators in the two-weight setting
    Li, Kangwei
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (02) : 568 - 589
  • [3] Variation and oscillation inequalities for commutators in two-weight setting
    Wen, Yongming
    Guo, Weichao
    Wu, Huoxiong
    FORUM MATHEMATICUM, 2020, 32 (06) : 1459 - 1475
  • [4] Bloom's inequality: commutators in a two-weight setting
    Holmes, Irina
    Lacey, Michael T.
    Wick, Brett D.
    ARCHIV DER MATHEMATIK, 2016, 106 (01) : 53 - 63
  • [5] Bloom’s inequality: commutators in a two-weight setting
    Irina Holmes
    Michael T. Lacey
    Brett D. Wick
    Archiv der Mathematik, 2016, 106 : 53 - 63
  • [6] Two-weight inequalities for multilinear commutators
    Kunwar, Ishwari
    Ou, Yumeng
    NEW YORK JOURNAL OF MATHEMATICS, 2018, 24 : 980 - 1003
  • [7] TWO-WEIGHT INEQUALITIES FOR HARDY OPERATOR AND COMMUTATORS
    Li, Wenming
    Zhang, Tingting
    Xue, Limei
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03): : 653 - 664
  • [8] Two-weight inequalities for commutators of fractional integrals
    Zhu, Ying
    Fu, Xing
    FILOMAT, 2024, 38 (10) : 3313 - 3328
  • [9] Two-Weight Inequalities for Multilinear Commutators in Product Spaces
    Airta, Emil
    Li, Kangwei
    Martikainen, Henri
    POTENTIAL ANALYSIS, 2023, 59 (04) : 1745 - 1792
  • [10] Two-Weight Inequalities for Multilinear Commutators in Product Spaces
    Emil Airta
    Kangwei Li
    Henri Martikainen
    Potential Analysis, 2023, 59 : 1745 - 1792