Matter field Kähler metric in heterotic string theory from localisation

被引:0
|
作者
Ştefan Blesneag
Evgeny I. Buchbinder
Andrei Constantin
Andre Lukas
Eran Palti
机构
[1] Oxford University,Rudolf Peierls Centre for Theoretical Physics
[2] The University of Western Australia,Department of Physics M013
[3] Uppsala University,Department of Physics and Astronomy
[4] Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),undefined
来源
Journal of High Energy Physics | / 2018卷
关键词
Flux compactifications; Superstrings and Heterotic Strings;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an analytic method to calculate the matter field Kähler metric in heterotic compactifications on smooth Calabi-Yau three-folds with Abelian internal gauge fields. The matter field Kähler metric determines the normalisations of the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 chiral superfields, which enter the computation of the physical Yukawa couplings. We first derive the general formula for this Kähler metric by a dimensional reduction of the relevant supergravity theory and find that its T-moduli dependence can be determined in general. It turns out that, due to large internal gauge flux, the remaining integrals localise around certain points on the compactification manifold and can, hence, be calculated approximately without precise knowledge of the Ricci-flat Calabi-Yau metric. In a final step, we show how this local result can be expressed in terms of the global moduli of the Calabi-Yau manifold. The method is illustrated for the family of Calabi-Yau hypersurfaces embedded in ℙ1×ℙ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^1\times {\mathrm{\mathbb{P}}}^3 $$\end{document} and we obtain an explicit result for the matter field Kähler metric in this case.
引用
收藏
相关论文
共 50 条
  • [41] Generating string field theory solutions with matter operators from KBc algebra
    Hata, Hiroyuki
    Takeda, Daichi
    Yoshinaka, Jojiro
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2022, 2022 (09):
  • [42] On the existence of heterotic-string and type-II-superstring field theory vertices
    Moosavian, Seyed Faroogh
    Zhou, Yehao
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 205
  • [44] Statistical distribution of the vacuum energy density in racetrack Kähler uplift models in string theory
    Yoske Sumitomo
    S.-H. Henry Tye
    Sam S.C. Wong
    Journal of High Energy Physics, 2013
  • [45] String amplitudes from Moyal string field theory
    Bars, I
    Kishimoto, I
    Matsuo, Y
    PHYSICAL REVIEW D, 2003, 67 (06)
  • [46] Deriving quarks confinement from the topology of quantum spacetime and heterotic string theory
    El Naschie, M. S.
    CHAOS SOLITONS & FRACTALS, 2008, 36 (02) : 193 - 195
  • [47] Self-interacting dark matter from the hidden heterotic-string sector
    Faraggi, AE
    Pospelov, M
    ASTROPARTICLE PHYSICS, 2002, 16 (04) : 451 - 461
  • [48] Superheavy dark matter from string theory
    Allahverdi, Rouzbeh
    Brockel, Igor
    Cicoli, Michele
    Osinski, Jacek K.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
  • [49] E6 grand unified theory with three generations from heterotic string theory
    Ito, Motoharu
    Kuwakino, Shogo
    Maekawa, Nobuhiro
    Moriyama, Sanefumi
    Takahashi, Keijiro
    Takei, Kazuaki
    Teraguchi, Shunsuke
    Yamashita, Toshifumi
    PHYSICAL REVIEW D, 2011, 83 (09):
  • [50] Superheavy dark matter from string theory
    Rouzbeh Allahverdi
    Igor Bröckel
    Michele Cicoli
    Jacek K. Osiński
    Journal of High Energy Physics, 2021