Matter field Kähler metric in heterotic string theory from localisation

被引:0
|
作者
Ştefan Blesneag
Evgeny I. Buchbinder
Andrei Constantin
Andre Lukas
Eran Palti
机构
[1] Oxford University,Rudolf Peierls Centre for Theoretical Physics
[2] The University of Western Australia,Department of Physics M013
[3] Uppsala University,Department of Physics and Astronomy
[4] Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),undefined
来源
Journal of High Energy Physics | / 2018卷
关键词
Flux compactifications; Superstrings and Heterotic Strings;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an analytic method to calculate the matter field Kähler metric in heterotic compactifications on smooth Calabi-Yau three-folds with Abelian internal gauge fields. The matter field Kähler metric determines the normalisations of the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 chiral superfields, which enter the computation of the physical Yukawa couplings. We first derive the general formula for this Kähler metric by a dimensional reduction of the relevant supergravity theory and find that its T-moduli dependence can be determined in general. It turns out that, due to large internal gauge flux, the remaining integrals localise around certain points on the compactification manifold and can, hence, be calculated approximately without precise knowledge of the Ricci-flat Calabi-Yau metric. In a final step, we show how this local result can be expressed in terms of the global moduli of the Calabi-Yau manifold. The method is illustrated for the family of Calabi-Yau hypersurfaces embedded in ℙ1×ℙ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^1\times {\mathrm{\mathbb{P}}}^3 $$\end{document} and we obtain an explicit result for the matter field Kähler metric in this case.
引用
收藏
相关论文
共 50 条
  • [31] A COSET SPACE COMPACTIFICATION OF THE FIELD-THEORY LIMIT OF A HETEROTIC STRING
    FODA, O
    HELAYELNETO, JA
    CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (04) : 607 - 615
  • [32] Stationary effective field theory of heterotic string vs Einstein-Maxwell theory
    Herrera-Aguilar, A
    PARTICLES AND FIELDS, PROCEEDINGS, 2002, 623 : 281 - 284
  • [33] Heterotic string space-time from probability theory
    El Naschie, MS
    CHAOS SOLITONS & FRACTALS, 2001, 12 (03) : 617 - 621
  • [34] Existence of a complete holomorphic vector field via the Kähler–Einstein metric
    Young-Jun Choi
    Kang-Hyurk Lee
    Annals of Global Analysis and Geometry, 2021, 60 : 97 - 109
  • [35] Natural inflation from near alignment in heterotic string theory
    Ali, Tibra
    Haque, S. Shajidul
    Jejjala, Vishnu
    PHYSICAL REVIEW D, 2015, 91 (08)
  • [36] Tachyon matter in boundary string field theory
    Sugimoto, S
    Terashima, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (07):
  • [37] On Hawking Radiation from a Charged Black Hole of Heterotic String Theory
    Alexis Larraaga
    Communications in Theoretical Physics, 2014, 61 (04) : 491 - 494
  • [38] On Hawking Radiation from a Charged Black Hole of Heterotic String Theory
    Larranaga, Alexis
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 61 (04) : 491 - 494
  • [39] Towards natural inflation from weakly coupled heterotic string theory
    Abe, Hiroyuki
    Kobayashi, Tatsuo
    Otsuka, Hajime
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2015, 2015 (06):
  • [40] NO RENORMALIZATION OF THE N=1 SUPERGRAVITY THEORY DERIVED FROM THE HETEROTIC STRING
    ELLIS, J
    JETZER, P
    MIZRACHI, L
    PHYSICS LETTERS B, 1987, 196 (04) : 492 - 498