Matter field Kähler metric in heterotic string theory from localisation

被引:0
|
作者
Ştefan Blesneag
Evgeny I. Buchbinder
Andrei Constantin
Andre Lukas
Eran Palti
机构
[1] Oxford University,Rudolf Peierls Centre for Theoretical Physics
[2] The University of Western Australia,Department of Physics M013
[3] Uppsala University,Department of Physics and Astronomy
[4] Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),undefined
关键词
Flux compactifications; Superstrings and Heterotic Strings;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an analytic method to calculate the matter field Kähler metric in heterotic compactifications on smooth Calabi-Yau three-folds with Abelian internal gauge fields. The matter field Kähler metric determines the normalisations of the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 chiral superfields, which enter the computation of the physical Yukawa couplings. We first derive the general formula for this Kähler metric by a dimensional reduction of the relevant supergravity theory and find that its T-moduli dependence can be determined in general. It turns out that, due to large internal gauge flux, the remaining integrals localise around certain points on the compactification manifold and can, hence, be calculated approximately without precise knowledge of the Ricci-flat Calabi-Yau metric. In a final step, we show how this local result can be expressed in terms of the global moduli of the Calabi-Yau manifold. The method is illustrated for the family of Calabi-Yau hypersurfaces embedded in ℙ1×ℙ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^1\times {\mathrm{\mathbb{P}}}^3 $$\end{document} and we obtain an explicit result for the matter field Kähler metric in this case.
引用
收藏
相关论文
共 50 条
  • [1] Matter field Kahler metric in heterotic string theory from localisation
    Blesneag, Stefan
    Buchbinder, Evgeny I.
    Constantin, Andrei
    Lukas, Andre
    Palti, Eran
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (04):
  • [2] Heterotic string field theory
    Okawa, Y
    Zwiebach, B
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (07):
  • [3] Hierarchical structure of physical Yukawa couplings from matter field Kähler metric
    Keiya Ishiguro
    Tatsuo Kobayashi
    Hajime Otsuka
    Journal of High Energy Physics, 2021
  • [4] Towards matter ination in heterotic string theory
    Stefan Antusch
    Koushik Dutta
    Johanna Erdmenger
    Sebastian Halter
    Journal of High Energy Physics, 2011
  • [5] Towards matter inflation in heterotic string theory
    Antusch, Stefan
    Dutta, Koushik
    Erdmenger, Johanna
    Halter, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (04):
  • [6] Field redefinitions and Kähler potential in string theory at 1-loop
    Michael Haack
    Jin U Kang
    Journal of High Energy Physics, 2018
  • [7] The Ramond sector of heterotic string field theory
    Kunitomo, Hiroshi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2014, 2014 (04):
  • [8] FREE HETEROTIC STRING FIELD-THEORY
    CHEN, W
    YU, Y
    PHYSICAL REVIEW D, 1987, 35 (12): : 3915 - 3922
  • [9] One loop tadpole in heterotic string field theory
    Theodore Erler
    Sebastian Konopka
    Ivo Sachs
    Journal of High Energy Physics, 2017
  • [10] Shape of gauge field tadpoles in heterotic string theory
    Nibbelink, SG
    MODERN PHYSICS LETTERS A, 2005, 20 (03) : 155 - 168