Reservoir computing using dynamic memristors for temporal information processing

被引:0
|
作者
Chao Du
Fuxi Cai
Mohammed A. Zidan
Wen Ma
Seung Hwan Lee
Wei D. Lu
机构
[1] University of Michigan,Department of Electrical Engineering and Computer Science
来源
Nature Communications | / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Reservoir computing systems utilize dynamic reservoirs having short-term memory to project features from the temporal inputs into a high-dimensional feature space. A readout function layer can then effectively analyze the projected features for tasks, such as classification and time-series analysis. The system can efficiently compute complex and temporal data with low-training cost, since only the readout function needs to be trained. Here we experimentally implement a reservoir computing system using a dynamic memristor array. We show that the internal ionic dynamic processes of memristors allow the memristor-based reservoir to directly process information in the temporal domain, and demonstrate that even a small hardware system with only 88 memristors can already be used for tasks, such as handwritten digit recognition. The system is also used to experimentally solve a second-order nonlinear task, and can successfully predict the expected output without knowing the form of the original dynamic transfer function.
引用
收藏
相关论文
共 50 条
  • [41] Optical signal processing using photonic reservoir computing
    Salehi, Mohammad Reza
    Dehyadegari, Louiza
    JOURNAL OF MODERN OPTICS, 2014, 61 (17) : 1442 - 1451
  • [42] Photonic reservoir computing: a brain-inspired approach for information processing
    Bienstman, Peter
    Dambre, Joni
    Katumba, Andrew
    Freiberger, Matthias
    Laporte, Floris
    Lugnan, Alessio
    2018 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2018,
  • [43] Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing
    Larger, L.
    Soriano, M. C.
    Brunner, D.
    Appeltant, L.
    Gutierrez, J. M.
    Pesquera, L.
    Mirasso, C. R.
    Fischer, I.
    OPTICS EXPRESS, 2012, 20 (03): : 3241 - 3249
  • [44] A unified information perceptron using deep reservoir computing
    An, Qiyuan
    Bai, Kangjun
    Liu, Lingjia
    Shen, Fangyang
    Yi, Yang
    COMPUTERS & ELECTRICAL ENGINEERING, 2020, 85
  • [45] Reservoir Computing for Temporal Data Classification Using a Dynamic Solid Electrolyte ZnO Thin Film Transistor
    Gaurav, Ankit
    Song, Xiaoyao
    Manhas, Sanjeev
    Gilra, Aditya
    Vasilaki, Eleni
    Roy, Partha
    De Souza, Maria Merlyne
    FRONTIERS IN ELECTRONICS, 2022, 3
  • [46] A Physical Reservoir Computing Model Based on Volatile Memristor for Temporal Signal Processing
    Liang, Xiangpeng
    Zhong, Yanan
    Li, Xinyi
    Huang, Heyi
    Li, Tingyu
    Tang, Jianshi
    Bin Gao
    Qian, He
    Wu, Huaqiang
    Heidari, Hadi
    2022 29TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (IEEE ICECS 2022), 2022,
  • [47] Toward optical signal processing using Photonic Reservoir Computing
    Vandoorne, Kristof
    Dierckx, Wouter
    Schrauwen, Benjamin
    Verstraeten, David
    Baets, Roel
    Bienstman, Peter
    Van Campenhout, Jan
    OPTICS EXPRESS, 2008, 16 (15) : 11182 - 11192
  • [48] Brain-Inspired Reservoir Computing Using Memristors with Tunable Dynamics and Short-Term Plasticity
    Armendarez, Nicholas X.
    Mohamed, Ahmed S.
    Dhungel, Anurag
    Hossain, Md Razuan
    Hasan, Md Sakib
    Najem, Joseph S.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (05) : 6176 - 6188
  • [49] Information Processing Capacity of Spin-Based Quantum Reservoir Computing Systems
    R. Martínez-Peña
    J. Nokkala
    G. L. Giorgi
    R. Zambrini
    M. C. Soriano
    Cognitive Computation, 2023, 15 : 1440 - 1451
  • [50] Information Processing Capacity of Spin-Based Quantum Reservoir Computing Systems
    Martinez-Pena, R.
    Nokkala, J.
    Giorgi, G. L.
    Zambrini, R.
    Soriano, M. C.
    COGNITIVE COMPUTATION, 2023, 15 (05) : 1440 - 1451