Reservoir computing using dynamic memristors for temporal information processing

被引:0
|
作者
Chao Du
Fuxi Cai
Mohammed A. Zidan
Wen Ma
Seung Hwan Lee
Wei D. Lu
机构
[1] University of Michigan,Department of Electrical Engineering and Computer Science
来源
Nature Communications | / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Reservoir computing systems utilize dynamic reservoirs having short-term memory to project features from the temporal inputs into a high-dimensional feature space. A readout function layer can then effectively analyze the projected features for tasks, such as classification and time-series analysis. The system can efficiently compute complex and temporal data with low-training cost, since only the readout function needs to be trained. Here we experimentally implement a reservoir computing system using a dynamic memristor array. We show that the internal ionic dynamic processes of memristors allow the memristor-based reservoir to directly process information in the temporal domain, and demonstrate that even a small hardware system with only 88 memristors can already be used for tasks, such as handwritten digit recognition. The system is also used to experimentally solve a second-order nonlinear task, and can successfully predict the expected output without knowing the form of the original dynamic transfer function.
引用
收藏
相关论文
共 50 条
  • [31] All physical reservoir computing system with tunable temporal dynamics for multi-timescale information processing
    Huang, Wanxin
    Wang, Yiru
    Ming, Jianyu
    Liu, Shanshuo
    Liu, Jing
    Fu, Jingwei
    Wang, Haotian
    Li, Wen
    Xie, Yannan
    Xie, Linghai
    Ling, Haifeng
    Huang, Wei
    INFOMAT, 2025,
  • [32] Spiking Reservoir Computing Based on Stochastic Diffusive Memristors
    Ma, Zelin
    Ge, Jun
    Pan, Shusheng
    ADVANCED ELECTRONIC MATERIALS, 2024,
  • [33] Information dynamics with confidence: Using reservoir computing to construct confidence intervals for information-dynamic measures
    Darmon, David
    Cellucci, Christopher J.
    Rapp, Paul E.
    CHAOS, 2019, 29 (08)
  • [34] Photonic Reservoir Computing: a new approach to optical information processing
    Vandoorne, Kristof
    Fiers, Martin
    Verstraeten, David
    Schrauwen, Benjamin
    Dambre, Joni
    Bienstman, Peter
    PHOTONICS NORTH 2010, 2010, 7750
  • [35] Photonic Reservoir Computing: A New Approach to Optical Information Processing
    Vandoorne, Kristof
    Fiers, Martin
    Verstraeten, David
    Schrauwen, Benjamin
    Dambre, Joni
    Bienstman, Peter
    2010 12TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2011,
  • [36] Reservoir computing using back-end-of-line SiC-based memristors
    Guo, Dongkai
    Kapur, Omesh
    Dai, Peng
    Han, Yisong
    Beanland, Richard
    Jiang, Liudi
    de Groot, C. H.
    Huang, Ruomeng
    MATERIALS ADVANCES, 2023, 4 (21): : 5305 - 5313
  • [37] Efficient Neuromorphic Reservoir Computing Using Optoelectronic Memristors for Multivariate Time Series Classification
    Su, Jing
    Lu, Jiale
    Sun, Fan
    Zhou, Guangdong
    Duan, Shukai
    Hu, Xiaofang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (06):
  • [38] Parallel information processing using a reservoir computing system based on mutually coupled semiconductor lasers
    Hou, Y. S.
    Xia, G. Q.
    Jayaprasath, E.
    Yue, D. Z.
    Wu, Z. M.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2020, 126 (03):
  • [39] Parallel information processing using a reservoir computing system based on mutually coupled semiconductor lasers
    Y. S. Hou
    G. Q. Xia
    E. Jayaprasath
    D. Z. Yue
    Z. M. Wu
    Applied Physics B, 2020, 126
  • [40] Sensory Adaptation in Biomolecular Memristors Improves Reservoir Computing Performance
    Maraj, Joshua J.
    Haughn, Kevin P. T.
    Inman, Daniel J.
    Sarles, Stephen A.
    ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (08)