An internal Lorentz symmetry induces the background Lorentz symmetry in the dissipative dynamics

被引:0
|
作者
R. Cartas-Fuentevilla
A. J. C. Juarez-Dominguez
机构
[1] Instituto de Física,
[2] Universidad Autónoma de Puebla,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We show that a dissipative field theory with background Lorentz symmetry underlies the field theory with global U(1)×SO(1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)\times SO(1,1)$$\end{document} symmetry constructed on a hyperbolic ring; the theory represents a dissipative model for a bipartite system compound of Klein-Gordon fields with different masses; the infrared limit corresponds to the usual dissipative field theory with a constant dissipative parameter, and with broken background Lorentz symmetry; in the ultraviolet limit the fields behave as free fields with unobservable dissipative effects. In this hyperbolic ring-based formulation, the observables correspond to Hermitian quantities, encoding two real quantities, which are appropriate for describing bipartite system; thus, the Lagrangian is constructed as a Hermitian U(1)×SO(1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)\times SO(1,1)$$\end{document} invariant quantity, and the two real potentials are identified with the subsystem-plus-reservoir system. The potentials can be identified with elliptic and hyperbolic paraboloids by adjusting a real parameter that is interpolating between pure U(1) and pure SO(1, 1) symmetries. At the end we address the problem of constructing a propagator on the hyperbolic ring.
引用
收藏
相关论文
共 50 条
  • [31] Symmetry of the Lorentz boost: the relativity of colocality and Lorentz time contraction
    Sharp, Jonathan C.
    EUROPEAN JOURNAL OF PHYSICS, 2016, 37 (05)
  • [32] SUPERSYMMETRIC EXTENSION OF LOCAL LORENTZ SYMMETRY
    ABE, M
    NAKANISHI, N
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (11): : 2837 - 2859
  • [33] The Lorentz extension as consequence of the family symmetry
    Wang, Hai-Jun
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (05)
  • [34] Hamiltonian Constraints from Lorentz Symmetry
    J. A. Przeszowski
    Few-Body Systems, 2005, 36 : 219 - 223
  • [35] Tests of Lorentz Symmetry in the Gravitational Sector
    Hees, Aurelien
    Bailey, Quentin G.
    Bourgoin, Adrien
    Pihan-Le Bars, Helene
    Guerlin, Christine
    Le Poncin-Lafitte, Christophe
    UNIVERSE, 2016, 2 (04)
  • [36] Quantizations of D=3 Lorentz symmetry
    Lukierski, J.
    Tolstoy, V. N.
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (04):
  • [37] Astrophysical tests of Lorentz symmetry in electrodynamics
    Mewes, M
    NEW WORLDS IN ASTROPARTICLE PHYSICS, 2003, : 89 - 95
  • [38] Astrophysical Neutrinos in Testing Lorentz Symmetry
    Roberts, Agnes
    GALAXIES, 2021, 9 (03):
  • [39] Black Hole Thermodynamics and Lorentz Symmetry
    Ted Jacobson
    Aron C. Wall
    Foundations of Physics, 2010, 40 : 1076 - 1080
  • [40] Lorentz symmetry of subdynamics in relativistic systems
    BenYaacov, U
    PHYSICA A, 1995, 222 (1-4): : 307 - 329