An internal Lorentz symmetry induces the background Lorentz symmetry in the dissipative dynamics

被引:0
|
作者
R. Cartas-Fuentevilla
A. J. C. Juarez-Dominguez
机构
[1] Instituto de Física,
[2] Universidad Autónoma de Puebla,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We show that a dissipative field theory with background Lorentz symmetry underlies the field theory with global U(1)×SO(1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)\times SO(1,1)$$\end{document} symmetry constructed on a hyperbolic ring; the theory represents a dissipative model for a bipartite system compound of Klein-Gordon fields with different masses; the infrared limit corresponds to the usual dissipative field theory with a constant dissipative parameter, and with broken background Lorentz symmetry; in the ultraviolet limit the fields behave as free fields with unobservable dissipative effects. In this hyperbolic ring-based formulation, the observables correspond to Hermitian quantities, encoding two real quantities, which are appropriate for describing bipartite system; thus, the Lagrangian is constructed as a Hermitian U(1)×SO(1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)\times SO(1,1)$$\end{document} invariant quantity, and the two real potentials are identified with the subsystem-plus-reservoir system. The potentials can be identified with elliptic and hyperbolic paraboloids by adjusting a real parameter that is interpolating between pure U(1) and pure SO(1, 1) symmetries. At the end we address the problem of constructing a propagator on the hyperbolic ring.
引用
收藏
相关论文
共 50 条
  • [21] On the Lorentz structure of the symmetry energy
    Gaitanos, T
    Di Toro, A
    Typel, S
    Baran, V
    Fuchs, C
    Greco, V
    Wolter, HH
    NUCLEAR PHYSICS A, 2004, 732 : 24 - 48
  • [22] Supersymmetry with Lorentz symmetry violation
    Drummond, I. T.
    PHYSICAL REVIEW D, 2023, 108 (04)
  • [23] LORENTZ INVARIANCE AS A DYNAMIC SYMMETRY
    WINTERBERG, F
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1987, 42 (12): : 1428 - 1442
  • [24] DAUGHTERS CONSPIRACIES AND LORENTZ SYMMETRY
    BITAR, KM
    TINDLE, GL
    PHYSICAL REVIEW, 1968, 175 (05): : 1835 - &
  • [25] ON THE LORENTZ-SYMMETRY BREAKING
    TARTAGLIA, A
    ZHANG, YZ
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1988, 99 (01): : 107 - 116
  • [26] REGGE FAMILIES AND LORENTZ SYMMETRY
    TINDLE, GL
    ACTA PHYSICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1969, 26 (1-2): : 47 - &
  • [27] ANALYTICITY, FACTORIZATION, AND LORENTZ SYMMETRY
    DIVECCHI.P
    DRAGO, F
    ACTA PHYSICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1969, 26 (1-2): : 35 - &
  • [28] Lorentz symmetry violation without violation of relativistic symmetry
    Bogoslovsky, GY
    PHYSICS LETTERS A, 2006, 350 (1-2) : 5 - 10
  • [29] LORENTZ EQUIVALENCE UNITARY SYMMETRY AND SPIN UNITARY SYMMETRY
    TEITLER, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (09) : 1739 - &
  • [30] Discrete Lorentz symmetry and discrete time translational symmetry
    Wang, Pei
    NEW JOURNAL OF PHYSICS, 2018, 20