An internal Lorentz symmetry induces the background Lorentz symmetry in the dissipative dynamics

被引:0
|
作者
R. Cartas-Fuentevilla
A. J. C. Juarez-Dominguez
机构
[1] Instituto de Física,
[2] Universidad Autónoma de Puebla,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We show that a dissipative field theory with background Lorentz symmetry underlies the field theory with global U(1)×SO(1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)\times SO(1,1)$$\end{document} symmetry constructed on a hyperbolic ring; the theory represents a dissipative model for a bipartite system compound of Klein-Gordon fields with different masses; the infrared limit corresponds to the usual dissipative field theory with a constant dissipative parameter, and with broken background Lorentz symmetry; in the ultraviolet limit the fields behave as free fields with unobservable dissipative effects. In this hyperbolic ring-based formulation, the observables correspond to Hermitian quantities, encoding two real quantities, which are appropriate for describing bipartite system; thus, the Lagrangian is constructed as a Hermitian U(1)×SO(1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)\times SO(1,1)$$\end{document} invariant quantity, and the two real potentials are identified with the subsystem-plus-reservoir system. The potentials can be identified with elliptic and hyperbolic paraboloids by adjusting a real parameter that is interpolating between pure U(1) and pure SO(1, 1) symmetries. At the end we address the problem of constructing a propagator on the hyperbolic ring.
引用
收藏
相关论文
共 50 条
  • [1] An internal Lorentz symmetry induces the background Lorentz symmetry in the dissipative dynamics
    Cartas-Fuentevilla, R.
    Juarez-Dominguez, A. J. C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (03):
  • [2] INTERNAL SYMMETRY + LORENTZ INVARIANCE
    COESTER, F
    MCGLINN, WD
    HAMERMESH, M
    PHYSICAL REVIEW B, 1964, 135 (2B): : B451 - &
  • [3] LORENTZ INVARIANCE AND INTERNAL SYMMETRY
    ORAIFEAR.L
    PHYSICAL REVIEW, 1965, 139 (4B): : 1052 - &
  • [4] INTERNAL SYMMETRY AND LORENTZ INVARIANCE
    ORAIFEARTAIGH, L
    PHYSICAL REVIEW LETTERS, 1965, 14 (09) : 332 - +
  • [5] LORENTZ-TYPE INTERNAL SYMMETRY
    DAVIDSON, A
    DAR, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (04) : 848 - 855
  • [6] Lorentz symmetry and the internal structure of the nucleon
    Ji, XD
    PHYSICAL REVIEW D, 1998, 58 (05): : 560031 - 560033
  • [7] Spontaneous symmetry breaking in Lorentz violating background
    Masood, Syed
    Shah, Mushtaq B.
    Ganai, Prince A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (02)
  • [8] SOME REMARKS ON INTERNAL SYMMETRY AND LORENTZ INVARIANCE
    BECCHI, C
    PHYSICS LETTERS, 1965, 16 (03): : 317 - &
  • [9] Lorentz symmetry is relevant
    Knorr, Benjamin
    PHYSICS LETTERS B, 2019, 792 : 142 - 148
  • [10] Testing Lorentz symmetry with planetary orbital dynamics
    Hees, A.
    Bailey, Q. G.
    Le Poncin-Lafitte, C.
    Bourgoin, A.
    Rivoldini, A.
    Lamine, B.
    Meynadier, F.
    Guerlin, C.
    Wolf, P.
    PHYSICAL REVIEW D, 2015, 92 (06):