An Improved Upper Bound on the Independent Domination Number in Cubic Graphs of Girth at Least Six

被引:0
|
作者
Gholamreza Abrishami
Michael A. Henning
机构
[1] Ferdowsi University of Mashhad,Department of Applied Mathematics, Faculty of Mathematical Sciences
[2] University of Johannesburg,Department of Mathematics and Applied Mathematics
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Independent domination; Cubic graphs; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Henning et al. (Discrete Appl Math 162:399–403, 2014) proved that if G is a bipartite, cubic graph of order n and of girth at least 6, then i(G)≤411n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G) \le \frac{4}{11}n$$\end{document}. In this paper, we improve the 411\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{4}{11}$$\end{document}-bound to a 514\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{14}$$\end{document}-bound, and prove that if G is a bipartite, cubic graph of order n and of girth at least 6, then i(G)≤514n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G) \le \frac{5}{14}n$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Domination versus independent domination in cubic graphs
    Southey, Justin
    Henning, Michael A.
    DISCRETE MATHEMATICS, 2013, 313 (11) : 1212 - 1220
  • [32] A note on independent domination in graphs of girth 6
    Haviland, Julie
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 42 : 171 - 175
  • [33] A note on independent domination in graphs of girth 5
    Haviland, Julie
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 40 : 301 - 304
  • [34] An upper bound for domination number of 5-regular graphs
    Hua-Ming Xing
    Liang Sun
    Xue-Gang Chen
    Czechoslovak Mathematical Journal, 2006, 56 : 1049 - 1061
  • [35] An upper bound for domination number of 5-regular graphs
    Xing, Hua-Ming
    Sun, Liang
    Chen, Xue-Gang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (03) : 1049 - 1061
  • [36] Sharp upper bound of injective coloring of planar graphs with girth at least 5
    Qiming Fang
    Li Zhang
    Journal of Combinatorial Optimization, 2022, 44 : 1161 - 1198
  • [37] Sharp upper bound of injective coloring of planar graphs with girth at least 5
    Fang, Qiming
    Zhang, Li
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (02) : 1161 - 1198
  • [38] An improved upper bound for signed edge domination numbers in graphs
    Karami, H.
    Khodkar, Abdollah
    Sheikholeslami, S. M.
    UTILITAS MATHEMATICA, 2009, 78 : 121 - 128
  • [39] On the ratio of the domination number and the independent domination number in graphs
    Furuya, Michitaka
    Ozeki, Kenta
    Sasaki, Akinari
    DISCRETE APPLIED MATHEMATICS, 2014, 178 : 157 - 159
  • [40] Maximum Bisections of Graphs with Girth at Least Six
    Wu, Shufei
    Xiong, Xiaobei
    GRAPHS AND COMBINATORICS, 2024, 40 (06)