An Improved Upper Bound on the Independent Domination Number in Cubic Graphs of Girth at Least Six

被引:0
|
作者
Gholamreza Abrishami
Michael A. Henning
机构
[1] Ferdowsi University of Mashhad,Department of Applied Mathematics, Faculty of Mathematical Sciences
[2] University of Johannesburg,Department of Mathematics and Applied Mathematics
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Independent domination; Cubic graphs; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Henning et al. (Discrete Appl Math 162:399–403, 2014) proved that if G is a bipartite, cubic graph of order n and of girth at least 6, then i(G)≤411n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G) \le \frac{4}{11}n$$\end{document}. In this paper, we improve the 411\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{4}{11}$$\end{document}-bound to a 514\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{14}$$\end{document}-bound, and prove that if G is a bipartite, cubic graph of order n and of girth at least 6, then i(G)≤514n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G) \le \frac{5}{14}n$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] A NEW BOUND ON THE DOMINATION NUMBER OF CONNECTED CUBIC GRAPHS
    Kostochka, A., V
    Stocker, C.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2009, 6 : 465 - 504
  • [22] Domination and total domination in cubic graphs of large girth
    Dantas, Simone
    Joos, Felix
    Loewenstein, Christian
    Machado, Deiwison S.
    Rautenbach, Dieter
    DISCRETE APPLIED MATHEMATICS, 2014, 174 : 128 - 132
  • [23] An improved upper bound on the domination number of a tree
    Cabrera-Martinez, Abel
    DISCRETE APPLIED MATHEMATICS, 2024, 343 : 44 - 48
  • [24] An Upper Bound for the Total Restrained Domination Number of Graphs
    Koh, Khee M.
    Maleki, Zeinab
    Omoomi, Behnaz
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1443 - 1452
  • [25] An Upper Bound for the Total Restrained Domination Number of Graphs
    Khee M. Koh
    Zeinab Maleki
    Behnaz Omoomi
    Graphs and Combinatorics, 2013, 29 : 1443 - 1452
  • [26] A new upper bound for the spectral radius of graphs with girth at least 5
    Lu, M
    Liu, HQ
    Tian, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (2-3) : 512 - 516
  • [27] Independent Domination in Cubic Graphs
    Dorbec, Paul
    Henning, Michael A.
    Montassier, Mickael
    Southey, Justin
    JOURNAL OF GRAPH THEORY, 2015, 80 (04) : 329 - 349
  • [28] Upper bound for the number of independent sets in graphs
    A. A. Sapozhenko
    Doklady Mathematics, 2007, 75 : 447 - 448
  • [29] Upper bound for the number of independent sets in graphs
    Sapozhenko, A. A.
    DOKLADY MATHEMATICS, 2007, 75 (03) : 447 - 448
  • [30] A sharp upper bound on the independent 2-rainbow domination in graphs with minimum degree at least two
    Khoeilar, Rana
    Keibari, Mahla
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2020, 28 (03) : 373 - 388